
After the Boom: A Health Check for IT Systems

Benedikt Stockebrand
<me@benedikt-stockebrand.de>

http://www.benedikt-stockebrand.de/

March 23, 2003

Contents

1 Introduction 2

2 The System Health Matrix 3
2.1 Matrix Rows I: Technical Components . 3

2.1.1 Infrastructure . 3
2.1.2 Hardware . 5
2.1.3 System Software . 5
2.1.4 Middleware . 5
2.1.5 Applications . 6

2.2 Matrix Rows II: People . 6
2.2.1 Users . 6
2.2.2 Operations Personnel . 6
2.2.3 System Developers . 7

2.3 Matrix Rows III: Functional Subsystems . 7
2.4 Matrix Rows Grand Finale: The Entire System . 7
2.5 Matrix Columns: Quality Criteria . 8
2.6 Matrix Columns I: Efficiency During Normal Operation 8
2.7 Matrix Columns II: Reliability and the Risks of System Failure 9

2.7.1 Component and People Failures . 9
2.7.2 Subsystem and Entire System Failure . 10
2.7.3 Security . 10
2.7.4 Known Problems and Likely Scenarios . 11
2.7.5 Maximum Desaster . 11

2.8 Matrix Columns III: Adaptability and Long Term Perspectives 11
2.8.1 Prolonging the Lifetime expectancy . 12
2.8.2 Changing Requirements . 12

3 Filling the Matrix 12
3.1 Tools . 12
3.2 Practical Considerations . 13
3.3 Dealing with Unknowns . 13
3.4 Examples . 14

4 What’s Next? 15

Epilogue 15

Bibliography 16

1

After the Boom: A Health Check for IT Systems 2

1 Introduction

During the last five years the IT world has encountered several revolutionary changes:

� The widely unanticipated end of a whole century caused a flurry of activities, obsoleting tons
of decade old hardware and terabytes of software from one second to another. The resulting
IT projects covered a huge range of complexity, from the simple replacement of a desktop
PC to migrating entire banks from their proprietary COBOL programs to SAP R/3.

� Only two years later the introduction of the Euro as the new currency throughout the
European Union caused another similar, although lesser, wave of activity in many areas.

� Alongside these spectacular, and precisely dated, events, the Internet established itself as a
new communications medium that forced the entire business world to change their processes.

All together these three events alone made the IT industry boom like never before. Which made
a lot of quacks come into the IT world for the quick money. Who left the IT world with a wide
range of functionally inadequate, badly designed and badly implemented IT systems.

Now that the excitement is over, things change. The quacks mostly left “to find new challenges”
and aren’t much of a loss. Managers start to worry about costs again, sometimes to the point
that they entirely forget that these costs are what generates enough revenue to make for a proper
business plan1 . But lamenting won’t change the situation; instead, existing systems need to be
analyzed and then made more profitable—or abandoned if there is no hope of salvaging them.

Now what is a healthy system? In the context of this discussion I consider a system “healthy”
if it meets requested requirements at reasonable costs. Independent of the particular function-
alities involved, requirements can be basically categorized into efficiency, reliability and lifetime
expectancy—and in the case of new systems, a reasonably early start of operation.

In a perfect IT world, all these requirements have been specified, analyzed, implemented and
successfully and at minimal cost met before a system is first brought into operation. In reality, even
obvious functional requirements are often barely met. More hidden requirements, like reliability
and extended lifetime expectancy, are usually less obvious to non-technical management and end
users and as a consequence even less likely to be met.

Additionally, during the “New Economy” boom, “time to market” considerations often led
to quick but expensive solutions. The valid intention to gain “market share” by meeting the
“market window” has since been succeeded by cost consciousness and competitiveness. Generally
requirements change over time, and sometimes slowly and gradually so the change won’t be noticed
and properly taken care of.

Finally, IT technology changes fast. What used to be a healthy solution five years ago may be
outrageously expensive to maintain and operate today. Or worse, it may be impossible to maintain
because some product used has become unavailable.

In this manuscript I present a methodology to analyze the health of an IT system. Following
a traditional approach, the requirements would be updated and then compared to the existing
system. This approach has two drawbacks: the reluctance of non-technical “business users” to
spend some “unnecessary” effort on a system that “already works” and the quickly changing IT
technologies already mentioned. So instead I propose a different approach: An analysis what
could be done to improve the system and what can and what cannot be expected from an existing
system as is, all presented in a form that can be presented to management and business users with
the question: “Is this what you want?”

In the scope of this manuscript we won’t consider the root causes for the symptoms we observe.
Neither will we analyze how to devise a plan how to “cure” a system.

1DeMarco [DeM93] has some nice comments on that from a software developer’s point of view.

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 3

2 The System Health Matrix

The analysis follows a two-dimensional schema, assigning the components of the system analyzed
to the rows and the analysis criteria to columns.

The rows are furthermore hierarchically structured. There are four major groups: Technical
system components, the people involved with the system, functional subsystems and the entire
system as a whole.

The columns refer to efficiency during normal operations, risks of system failures, and the
lifetime expectancy of the system.

Figure 1 (p. 4) shows a template for such a health matrix.
The rest of this section explains how to fill the rows and columns of the matrix with system

subcomponents and detailed evaluation criteria, respectively.

2.1 Matrix Rows I: Technical Components

Probably the most obvious candidates for an analysis are the technical system components. To
improve chances that an analysis addresses all relevant components it is useful to classify them
and work through all the classes.

2.1.1 Infrastructure

Even though the infrastructure may be considered “outside” a system, any individual system
analysis that is not part of an evaluation of an entire IT environment (like a data center or even
a group of data centers) must address the environment in question. After all, problems with the
infrastructure may affect the systems health quite seriously.

Infrastructure components that affect the health of an IT system can be:

Data Center Space: The space available at a data center can be very critical. Once a system
is productive, moving it to another space, possibly another data center, can become an
expensive affair, both as far as the actual transport as well as the potential downtime are
concerned.

Power Supply: Power supplies are important to analyze for two reasons: The external supplies
may be unreliable. If they are, the UPS and diesels become more important to analyze both
for reliability as well as sizing (of the diesel tanks, in particular). Next, data centers need
more and more electricity. Five years ago a rack powered with two 16A lines at 220V was
considered well equipped. With the upcoming blade systems it should be obvious that power
requirements may easily triple within the next few years.

UPS and Diesels: Like the regular power supply, UPS and diesel generators are obviously es-
sential for reliable operations.

Air Conditioning: Undersized or unreliable air conditioning affects all systems installed in a
data center. At best, a relevant air conditioning failure will require the temporary shutdown
of less important systems. At worst, hardware failure and possibly data loss can occur.
And since the power used within a single rack keeps increasing, spare capacity and/or the
capability to add capacity is essential in the long run.

Internal Networks: Even though internal network components, including switches, cabling,
patch arrays and such tend to be quite reliable nowadays, they should be considered as
far as they have an effect on the system analyzed.

Internet Uplinks: Since WAN connections are both expensive as well as notoriously unreliable
(compared to LAN connections, that is) they deserve some attention.

This list can, by its very nature, not be complete. But it coversthe most components components
I’ve encountered so far and should generally serve well as a basic checklist to avoid missing the
obvious.

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 4

Efficiency during Failure related Lifetime
normal operations risks and scenarios expectancy

C
o
st

s/

O
p
er

a
ti

o
n
a
l
E

ff
o
rt

C
o
m

p
o
n
en

t
F
a
il
u
re

s

S
ec

u
ri

ty

K
n
ow

n
P

ro
b
le

m
s.

..

L
ik

el
y

S
ce

n
a
ri

o
s.

..

M
a
x
im

u
m

D
es

a
st

er

L
if
et

im
e

E
x
p
ec

ta
n
cy

U
p
g
ra

d
e

E
x
p
en

se
s

S
ca

la
b
il
it
y

A
va

il
a
b
il
it
y

N
ew

F
ea

tu
re

s.
..

O
th

er
s.

..

Technical Components
Infrastructure

Data Center Space
Power Supply
UPS and Diesels
Air Conditioning
Internal Networks
Internet Uplinks
. . .

Hardware
Servers
Storage
Clients
. . .

System Software
Operating System
Volume Manager
Cluster Software
. . .

Middleware
Data Base
Backup Client
Monitoring Agent
Web Server
. . .

Applications
. . .

People
Users

. . .
Operations Personnel

Operators
System Administrators
DBAs
External Support
Help Desk
. . .

System Developers
Business Users
Software Architects
Programmers
System Architects

Functional Subsystems
. . .

Entire System

Figure 1: The IT System Health Matrix

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 5

2.1.2 Hardware

Next we consider the system hardware, normally the hardware dedicated to the particular system.
This usually includes:

Servers: With the exception of pure peer-to-peer systems, virtually all systems contain some
servers.

Storage: As soon as persistent data is stored throughout the system, the storage should be
considered separately no matter if it is a single internal disk in a server or a dedicated SAN
environment. Doing so tends to simplify the subsequent reliability analysis for the entire
system.

Clients: Even though dedicated clients are mostly substituted by “multi-purpose” PCs it tends
to be useful to take a closer look at the client hardware used.

As with the infrastructure components, this list shouldn’t be considered exhaustive.

2.1.3 System Software

System software, i.e. software that runs on top of the hardware and provides a hardware-independent
interface to the software layers above, is the next class of components we need to address. Common
candidates are:

Operating Systems: Just the simple fact that a profession “system administrator” exists should
demonstrate why operating systems are a vital part of any IT system today and as such
deserve particular attention.

Volume Managers: In larger IT systems with a significant amount of persistent data, volume
managers like VxVM, SDS, HSM, LSM and such are critical components. The server/storage
distinction at the hardware level is somewhat mirrored in the OS/volume manager distinction
at the system software level.

Cluster Software: In theory, using clusters improves a systems availability by providing a “vir-
tual server” running on redundant hardware. But clusters increase the complexity of every
system quite noticeably, in some cases to the point that availability is seriously reduced.

2.1.4 Middleware

Next are middleware components. They are usually defined as software that provides some ap-
plication independent high-level functionality to the actual applications running on top of them.
The distinction between middleware and application is somewhat fuzzy but serves our purposes
reasonably well—unless we intend to start some religious war, of course.

Data Bases: Data bases, and RDBMS’ in particular, are probably the most common middleware
components that have a noticeable effect on the health of IT systems.

Backup Clients: Backup clients, while even more common than RDBMS’, often go by unnoticed.
Until somebody desperately needs to restore some data, that is. . .

Monitoring Agents: Proper monitoring is essential to achieve high reliability and as such mon-
itoring agents are quite similar to backup clients.

Web Servers: Web servers are a typical border case between middleware and application soft-
ware. In a web based system that makes extensive use of CGIs, servlets and such the web
server proper may actually be considered a middleware component.

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 6

2.1.5 Applications

Most IT systems run some application software that provides some functionality to the users.
These applications are obviously quite important, but different from the previous categories they
can’t be pressed into some generic structure. So it takes quite some understanding of the structure
of the applications and particular care to consider them properly structured and without missing
anything relevant.

2.2 Matrix Rows II: People

It is highly fashionable to dismiss employees from consideration by calling them the “companies
most valuable asset”. Nevertheless we just consider them part of the IT system and assess how
critical they are to the health of the system.

According to standard sysadmin lore there are effectively two kinds of people: Sysadmins and
the lower life forms. We further distinguish the between three lower life forms: users, system
developers and almost-sysadmins.

The three groups of people, users, operations personnel and system developers, correspond
to some degree to the three major evaluation criteria of efficiency, reliability and long term
prospects—at least they should correspond, provided that a system is in any reasonably healthy
state.

2.2.1 Users

If an IT system is direcly used by users, it is important to check the interaction between the
system and the users.

If the users are working for the company that owns the system, it is obvious that the users
“function” as part of the system. It may be possible to obtain some “performance” data from the
controlling or human resources department about that interaction. Otherwise, that data needs to
be obtained e.g. through interviews and/or some basic calculations based on the number of users
and the number of transactions taking place in a given amount of time.

If the users are customers it may be harder to obtain such data. In that case however, it is
more likely that marketing, customer care or even top management bother to see how satisfied
customers are with the system so they can supply the data.

2.2.2 Operations Personnel

Similar to users, operations personnel is quite important to the “functioning” of an IT system.
Their role is more extensive, though: They must handle the system during regular operation
which in itself can be a tedious and time consuming task. They must also deal with problems
quickly and reliably. They must preserve the knowledge about the system, its problems and their
solutions and finally they must adjust the system to a large degree to changing circumstances like
new operating system versions, security patches and others.

Operations personnel can be to some degree classified according to these groups:

Operators: These are the people who take care of routine work, like changing tapes in a tape
library, installing machines into racks and such.

System Administrators: Sysadmins take care of the system software, network configurations
and usually the middleware components except for relational data bases.

Data Base Administrators: Since data bases are fairly complex the DBAs are sometimes a
separate group from the sysadmins.

Application Administrators: Some applications are so complex that they require special ap-
plication administrators.

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 7

External/Vendor Support Specialists: External or vendor support specialists are those spe-
cialists that you rely upon to solve the very rare or very difficult problems. They range from
hardware repair personnel to specialized product gurus.

Help Desk: Help desk personnel is the link between the users and the other technical personnel.
They can often relay the average users problems in a fairly structured way, which can be
quite helpful when analyzing the system.

2.2.3 System Developers

Finally, there are the people who were involved creating the system. In many cases, especially
during the last five to seven years, many of them were often brought in as hired guns who were
rarely available once the initial project ended.

System developers can be roughly classified into these groups:

Business Users: They are the people who have an idea what functionality the system should
actually provide. They are usually non-technical but have a detailed understanding of the
purpose of the system. They are primarily in charge of the requirements management.

Software Architects: They design some (application) software to meet the requirements of the
business users.

Programmers: They implement the software designed by the software architects.

System Architects: They design everything except the software to turn the whole thing into a
system. “Implementation”, or installation, is usually left as an exercise to the operations
personnel.

This classification is somewhat simplified and relates to a certain style of project organization
which, albeit widely employed, doesn’t exactly prove particularly useful in many cases.

2.3 Matrix Rows III: Functional Subsystems

With reasonably complex IT systems there is usually a plethora of different functionalities pro-
vided. Some of these functionalities are more important or more complex or more reliable than
others. It is often helpful to break up the system into such functional subsystems, i.e. subsystems
that provide a certain functionality or group of closely related functionalities.

Defining these subsystems is sometimes nontrivial and requires some understanding of the
business domain involved. Once the subsystems are defined it is often quite simple to derive the
assessment of each subsystem from the assessment of the components and people involved.

Why are the functional subsystems so important? To explain the state of a system to a “tech-
nically challenged” management it is mandatory to show the economic relevance of the problems
found. The functional subsystems do exactly so; a statement “With the current backup solution
it is entirely unknown if it is at all possible to do a desaster recovery in case of a total loss of the
disk storage involved, e. g. due to water or fire damage, without manually re-entering all the data
from existing paper records” is more useful than a “I’ve seen some people try to do their backup
with tar and gzip on a DAT DDS-2, but I’ve never seen it work”.

2.4 Matrix Rows Grand Finale: The Entire System

Finally, all the relevant aspects can be compiled into an overall statement about the system,
somewhat like a “management abstract”.

Just like other “management abstracts” known elsewhere such a compilation is only useful if
the system isn’t too complex and the state of its components is somewhat consistent. With more
complex system where the components range anywhere from “pristine” to “irrecoverably broken”
any oversimplification will be counterproductive.

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 8

2.5 Matrix Columns: Quality Criteria

Now that we defined what we want to analyze it is time to define what criteria we want to apply.

As mentioned in chapter 2 there are three basic criteria relevant to the health of an exist-
ing system. Since their natures are quite different we address each of them and explain their
peculiarities.

The three criteria are “efficiency”, “reliability” and “adaptability” and they assess the system
during normal operation, during abnormal situations and its long term perspective, respectively.

Since we consider already existing systems only, we may safely ignore a fourth criterium that ba-
sically applies to systems under construction only: Meeting the launch deadline, or being launched
as soon as possible.

2.6 Matrix Columns I: Efficiency During Normal Operation

Efficiency is the first order approximation of a systems short term economic health, at least if the
system is reasonably reliable. Traditionally, efficiency is measured in “bangs per buck”, where
“bangs” are measured in whatever unit that meets the functionality provided and “bucks” can be
any reasonably hard current.

At first glance, efficiency of technical components seems quite easy to measure; just ask con-
trolling how many bucks you spend and marketing, HR department or management how many
bangs you get out of them. Doing so however may reveal that it is difficult to define how to
measure the bangs. Taking a look at the functional subsystems may be helpful to define a type of
bang or “business transaction” for each of which the matrix should be extended with a separate
column.

Similarly, the effort necessary from the people involved during regular operations can be as-
sessed; at worst it may be necessary to measure how long a user needs per bang, assess the effort
for operations personnel routine tasks and put that into relation with personnel expenses. System
developers should be irrelevant in this context; if they aren’t that’s an obvious sign of serious
problems.

The functional subsystems and the entire system can usually be assessed through basic arith-
metics from the already assessed components and shouldn’t prove unsolvable to anybody with
average arithmetics skills.

So far the efficiency analysis is little more than boring and tedious unless we’ve been lucky and
got a chance to scrounge the necessary information from the controlling department. We’ve got a
few numbers, but by themselves they don’t mean anything—we need some others we know to be
“reasonable” to compare them to. In an average environment, presenting the numbers found so
far to the average technically challenged management will result in some “this is too expensive,
we need to cut the costs”, which is just the psychologically correct way to say “you, the techno
geeks, cut the costs and we, the management, will keep complaining anyway”. . .

Theoretical computer science shows a way to avoid this situation. The objective of computa-
tional complexity is to show lower bounds on problems; no matter what (correct) algorithm people
come up with, it can’t be better than these lower bounds. Any algorithm that approaches the
lower bound reasonably well is considered a “good” algorithm.

We can use a similar approach: We dream up an imaginary system that is reasonably well
made and derive some “reasonable” reference values from it. We can then compare the values
from that imaginary system with the ones from the actual one. If both are reasonably close we
can assume that the system is healthy.

The challenge with this approach is that the imaginary system should be unrelated to the
existing one—it is meant to be “reasonable” not “like the one we’ve got”. This requires experience,
imagination and sometimes some lab tests to obtain useful reference values.

It also requires experience to understand the meaning of “reasonably close” in this context.

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 9

2.7 Matrix Columns II: Reliability and the Risks of System Failure

In a perfect system the health check should be complete after the efficiency assessment. But in
real life, system failures are part of the business. So we need to take reliability and failure issues
into consideration to augment the results we got from the efficiency assessment.

While risk analysis and risk management can be made a sophisticated science, for our purposes
we limit ourselves to the basic definition that risk is the product of the probability that an event
occurs times the damage it will cause. On the damage side we can only assess the immediate
technical recovery expenses; all other damages need to be assessed by the business user and/or
management. To support them doing so we can provide failure and recovery scenarios and their
probability.

There are basically two kinds of failures which I’ll call “non-disruptive” and “disruptive” fail-
ures, respectively. While non-disruptive failures, like a disk failure within a RAID subsystem,
don’t affect the business side, i. e. the users and the money making, disruptive failures do affect
users and business. This distinction is somewhat fuzzy; a disk failure in a heavily loaded RAID5
subsystem will cause a performance loss that is noticeable to users while the temporary loss of a
primary DNS server and the resulting incapability to do DNS updates will usually go unnoticed
in many environments.

This distinction leads to the question if non-disruptive failures shouldn’t be considered part
of the efficiency column. Ignoring both tax regulations and controlling methodology I rather
consider them failures like their disruptive counterparts because even a non-disruptive failure
causes unexpected and unscheduled work to the operations personnel. Anybody who had to fix a
problem late at night while on call duty should appreciate this choice.

The reliability and risk related columns of the health matrix are more differentiated than the
efficiency column. We first consider component failures, where components are not limited to
hardware but also include software and the people involved with the system. Next we consider
intentional failures due to security related events. Then we make use of experiences made with
the system so far and assess problems already known from experience and scenarios we consider
likely. Finally we assess an assumed “maximum desaster” and how we deal with it.

2.7.1 Component and People Failures

Probably the most obvious type of failure is ahardware failure. We generalize this and consider
failure of all technical components as well as people.

With all components it is a matter of experience to estimate how likely a failure is; different
from the initial project that created the system we can usually make good use of the experience
gathered during the operation of the system.

To assess any invididual component we need to answer three questions:

1. How can the component fail?

2. What are the consequences of each kind of failure?

3. How likely is each kind of failure?

The first question is usually the most difficult to answer once we’re past the failure of individual
disks within a RAID system. It requires both experience and imagination to come up with
a reasonable list of failure types. And it requires knowledge what other components the one
considered depends upon in which way.

The second question can be tedious to answer in a complex system; for methodological reasons
we won’t consider the effects on functional subsystems but focus on the “immediate” consequences.
But still, a RDBMS that mysteriously crashed, losing data in the process, can’t be revived following
some routine procedure. The important point here is to check not only the consequences like “if
A breaks then B will lose data and C shuts down automatically” but also the whole sequence

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 10

of (potential) events all the way back to normal operations. So it could be something like “if A
breaks it takes five minutes to have the monitoring event (or a user complaint) reach sysadmin
B who will diagnose the problem in approximately 15 minutes and call vendor C to replace D
within another 4 hours according to a service contract and call the backup admin on duty to do
a 6 hour recovery, resulting in a loss of service of approximately 10:20 hours and recovery costs of
approximately 2000 bucks”. (I told you it could be tedious.) To keep the effort at bay as many
problems as possible should be considered together; neither the monitoring nor external service
contracts need to be documented for each and every such failure. Some common cases along the
lines of “nobody has a clue what’s going to happpen if A breaks because nobody ever bothered
to worry about it2”, should be documented exactly like this—preferably in red if you have a color
printer at hand.

The third question can sometimes be answered from problem tracking systems, log books or
otherwise simply from the operations personnels experience.

While it may sound quite mechanistic, people are quite similar to technical components. They
age and eventually retire, sometimes they quit their jobs on short notice and in some very unfor-
tunate cases they simply become unavailable because of illnesses or accidents.

People differ from technical components in one fundamental way: They are capable to learn.
This provides the system itself with a capability to learn, to adapt and improve itself. Again this
sounds quite mechanistic, but the loss of every “human component” that alone knows about some
aspect of the system is a partial amnesia of the entire system. Insufficient “knowledge replication”
is extremely dangerous because a desaster recovery, i.e. hiring a successor and bringing him/her
up to speed, is expensive, takes time and is always only partially successful.

2.7.2 Subsystem and Entire System Failure

Assessing subsystems is slightly different from assessing basic technical components but generally
follows the same pattern.

The three questions from the previous section remain the same but their answers look a bit
different. Subsystems don’t fail by themselves but their modes and probabilities of failure can
be derived from the components they are built upon and their interaction within the subsystem,
providing answers for the first and third question.

The consequences are normally outside the technical dimension and therefore the second ques-
tion is left to the business user or management to answer. Any technical analysis can only provide
failure scenarios and their associated probabilities.

2.7.3 Security

While a full security audit of a system is often beyond the scope of a general assessment, critical
systems should have been audited before they went online, after major changes and at fixed
intervals during their entire lifetime.

So much about theory.

Since a full security audit is out of scope for our purposes we limit ourselves to modify the
three questions about failure modes, consequences and probability and ask six questions about
the security of components, personnel, functionals subsystem and the entire system:

1. How security-sensitive is each component?

2. What kinds of security related events are possible or imaginable?

3. How likely is each event?

4. How do I notice each event?
2Of course, Nobody just left the company for a better job elsewhere. . .

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 11

5. What is the defense plan for each event?

6. What are the consequences of each event?

There are basically two kinds of security events to consider: The discovery of security flaws in
system components and actual attacks. Both kinds basically pose questions about the security
related quality of the component, its visibility, the notification procedure, vendor support and the
associated handling procedure. The second kind, dealing with actual attacks, additionally shows
architectural mistakes like insufficiently layered security models, and the business consequences of
an attack.

Unanswered questions in this column usually show some serious problem and should be clearly
marked as such.

2.7.4 Known Problems and Likely Scenarios

Since we are dealing with an existing system where we can make good use of previous experience
it also pays to analyze problems that have occured in the past.

This involves interviewing the people involved with the system and, if available, the analysis
of log books, problem ticket systems and similar ressources. For each relevant problem found a
separate column should be created and then the role of every component with respect to that
problem should be assessed.

In this context, “likely” scenarios are those that are considered a reasonable risk. While it may
be unlikely that two redundant Internet links simultaneously fail, the consequences and therefore
the risk may be high enough to warrant a closer examination.

2.7.5 Maximum Desaster

As a special case of a “likely scenario” there should be a “worst case” defined and analyzed. It
basically serves as a catch-all for all those problems and scenarios missed because nobody ever
thought of them so far.

Dealing with anything beyond this scenario should be entirely out of scope of a technical
assessment. The remaining risk is either accepted as inevitable or an adequate insurance should
be sought. What to define as the maximum desaster depends on the importance of the system
and the available ressources. A bank may possibly consider to deal with the loss of an entire data
center due to a major fire by transferring operations to a standby data center. A student writing a
master thesis usually won’t buy a second, identically equipped PC to deal with the consequences
of a strategically spilled cup of coffee.

2.8 Matrix Columns III: Adaptability and Long Term Perspectives

So far we have only considered the health of a system at the time of the analysis. While this is
quite important, it isn’t enough.

A system that requires some special hardware or some particular OS version is bound to be
comparatively short-lived. Since virtually all systems once needed an initial economic effort to
get started it is important to keep them alive as long as possible with as little economic effort as
possible. Unfortunately most initial projects ignore this issue.

What’s worse, requirements change. Twenty years ago a bank could still afford to shut down
their computers for servicing every night. Today customers expect online banking to be always
available. Hardware continuously gets cheaper and faster, so features that would have been eco-
nomically infeasible five years ago are becoming standard, at least with your fiercest competitor,
and need to be added to your system. The Internet branches of many businesses are still growing
fast, so systems may keep growing at a rate faster than accordingly faster standard hardware
becomes available.

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 12

So we need to assess the future prospects of the system we investigate as well as its present
state. Together with our primary tools, experience and imagination, this takes some additional
level of guesswork. We distinguish roughly between two aspects: The lifetime expectancy of the
system with the given functionality and the handling of new requirements and functionalities.

2.8.1 Prolonging the Lifetime expectancy

In our matrix we first use a column “expected lifetime” to document what the lifetime expectancy
of each component is. With hardware, the important point is how long that hardware will stay
supported by its vendor so that spare parts and service contracts are available. Similarly, soft-
ware components may require certain hardware and vice versa. These dependencies need to be
documented here. The “lifetime expectancy” of people should obviously not be taken literally;
instead their involvement with the system should be considered, taking int account not only their
retirement but a potential frustration related resignation, transfer into another project or the end
of their contract. Subsystems are treated like before, by aggretating the data of the components
they are built from.

The results found in this column are often even more useful to scare management than an
unexpected tax audit.

Next we use another column “upgrade expenses” to document if it is possible and what needs
to be done at what costs to extend the lifetime. It is helpful to determine the most critical
components first so we know for what time frame we need to extend the lifetime of all other
components. This provides some idea of the expenses and effort necessary to keep the system
alive and allows management to decide when to plan for a successor system.

If the system is healthy it should have a reasonable lifetime expectancy and acceptable upgrade
expenses.

2.8.2 Changing Requirements

Finally, the requirements towards an IT system tend to change. For every requirement that is
suspected to change another column should be established to document what expenses occur to
implement these costs throughout the system.

There are some standard requirements that should be almost universally considered:

Scalability: Businesses tend to grow. The Internet side of business tends to grow faster than the
rest. So it is important to check for all components and subsystems if they scale.

Availability: Availability requirements tend to converge geometrically towards 100%. Designs
that don’t consider this and e.g. require several hours every night to run an offline backup
should have their availability limitations documented.

New Features: Often additional features get requested after the system has become productive.
If any of those requirements are known or guessable they should be roughly analyzed both
for feasibility and costs here.

Others: In some cases there are other requirements that can change. These include e.g. changing
legal requirements, external interfaces that get updated and such.

3 Filling the Matrix

3.1 Tools

There is a range of tools available that can be used to create and maintain a matrix.

Probably the most obvious tool is a spreadsheet program; the matrix will get bigger than
you can fit on a normal sheet of paper. That doesn’t mean that it’s a good idea to stuff all

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 13

and everything into a single spreadsheet, but keeping a central spreadsheet that refers to separte
documents for more complex issues helps to keep things manageable. If you want to show off with
the occasional large scale printout you might want to make use of a inkjet plotter if you have
access to one.

One of my favourites is asimple time tracking tool, like titrax (also available for Palm PDAs)
or gtimer, which allow with little effort to keep track of the time spent on activities (or customers).

Monitoring and trouble ticket systems are often a useful tool if they are already established
since they allow to research the history of the system and the problems experienced so far. In
smaller environments there is often a traditional log book used by operations personnel.

3.2 Practical Considerations

Now that we’ve defined the rows and columns for our system we’ve got a huge empty matrix that
looks suspiciously like a serious bit of work. This leads to the obvious question: Is the effort to
fill the matrix in any way justified?

In a perfect world all relevevant parts of the matrix should have been considered during the
initial project and documented in some way that is in essence equivalent to the matrix. In real
projects however many of the aspects we find in the matrix have been ignored; in other words, the
matrix provides some guidance to identify tasks left unfinished by the project.

In a ISO 9000 style environment it might be considered reasonable to work through the entire
matrix. I personally haven’t seen any environment where ISO 9000 was actually adhered to
throughout everyday work so I can’t tell about the use of our matrix in such an environment.

But what about the “average” IT environment that was rushed into existence through a “death
march” [You97] or “(pseudo) crunch project” [RR00] without consideration of quality, that was
declared a success because nobody wanted to accept responsibility for the money wasted, that
subsequently deteriorated because nobody with the necessary competence and authority took care
of it and that has been neglected to the point that nobody knows how to handle even common
problems since the last sysadmin who knew left the company after a major clash with management?

In such an environment it may be helpful to introduce the matrix to get a general overview of the
situation even if the matrix is mostly incomplete. Even more important, continuous updates of the
matrix help to understand the impact of problems when they occur. A vendor who goes bancrupt
or simply discontinues the support of some products, changes in staff, hardware and software
modifications all tend to have hidden dependencies that can be discovered through the matrix.
“Continuous updates” in this context doesn’t mean that all and every event and action needs to
be incorporated into the matrix immediately; updating just before a meeting with management,
preferably generating a list of relevant changes since the last meeting along the way, should usually
suffice.

Nice about the matrix approach is that it is useful even with a mostly incomplete matrix
to identify the impact of problems quite easily, show where minor efforts can at least ease the
situation and provide a way to prioritize activities in a sound way. And, last but not least, it helps
to communicate with non-technical business users and management, too.

3.3 Dealing with Unknowns

Another open question is: How do I deal with missing information?

Consider the archetypical backup issue again: Because some backup has never been tested we
don’t have any idea how long a desaster recovery will take after some essential storage subsystem,
preferably the boot disk, fails. We don’t even know how to do that desaster recovery or what
problems we have to expect (and deal with) during the recovery.

This is obviously a desaster waiting to happen. But where does it fit into the matrix and how
do I recognize similar but less obvious problems?

The simple answer is: In the particular cell (“boot disk”,”component failure”) there should be
some explanation what happens then but instead it shows a red question mark. This propagates

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 14

to all functional subsystems that depend on the server in question, all the way up to the entire
system. Similarly we document the situation with all other components that may need some
sort of restore or desaster recovery. All procedures that have never been tested, documented or
made general knowledge should be thus marked. The “maximum desaster” column is particularly
important here: If it has question marks somewhere throughout the column it should become
obvious to everybody that some unexpected desaster is waiting to happen.

3.4 Examples

Now that we’ve seen what the matrix looks like and what should be documented where and how
it is time for some war stories to see where they show up in the matrix.

� Last time I ordered some books at a well-known internet book shop I noticed that they
replaced their about six stage order procedure by a single page showing all the assumed
defaults and buttons to use if you want to change some of their defaults. This saved me
maybe two or three minutes of time, them probably some work on their web servers and
related backend machines and seemed quite a nice improvement in general.

Where does this show in our matrix?

It is an efficiency improvement that affects both the users (customers) and their server
hardware even if it might not show up as increased gross income due to other, unrelated
events.

� Consider a DNS system consisting of a primary server and say five secondaries. Whenever
the primary is down, updates are impossible.

How do I see if this setup is acceptable?

This is not a technical but a business decision. What we may know from the matrix is that
the primary had an availability of 99.9% in the past, which is equivalent to eight hours of
unscheduled downtime per year, and needs an additional two hours of scheduled mainte-
nance downtime per year for disruptive maintenance. The matrix should document how the
functional subsystems are affected and with that information we can ask the business user
or management if this is acceptable to them or if they prefer a better, but more expensive,
solution.

� An low quality text processing software is used throughout a company. The software is
known to crash with documents larger than 100 pages approximately every three hours or
less, in 10% of all cases ruining the file on disk during that crash in addition to the unsaved
changes..

Where does this show?

If this problem actually happens, i.e. the software is used for documents of this size, this
should be a dedicated column in the “known problems” group. In this column the effort to
recreate the lost document and the probability of this event should be documented so that
the HR department can assess the resulting non-technical costs.

� Where does the undertrained, overworked sysadmin show?

Insufficient training shows in various cases: The sysadmin needs external support for rea-
sonably frequent tasks because he/she is unable to do them himself/herself as well as during
common failure scenarios.

Excessive workload is a bit more difficult to find because normally a sysadmin is involved
with multiple systems so his/her workload doesn’t show in a single matrix. But the known
problems and how they were handled in the past may show insufficient availability of sysad-
min power. Finally, the workload during regular operations may be excessive, showing that

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 15

the sysadmin is doing unnecessary routine tasks that should be automated—a properly con-
figured monitoring system reads log files noticeably faster than a sysadmin.

Generally personnel problems like this should eventually show in the “lifetime expectancy”
of the sysadmins involved with the system: if the last three sysadmins resigned after half a
year with the system this should be an obvious indicator.

� A system was originally built by a contractor who went out of business later on. What does
that imply?

Throughout the long term perspective columns there should be question marks about up-
grades and new features. If that very contractor also provided reasonably frequent last level
support, this should show up throughout the reliability columns. Finally, if the help desk
was staffed by the contractor and nobody is really comfortable with the system, this should
hit the “help desk” row or related.

A similar situation can be observed if a “99%” complete system is delivered by a contractor
and then the developers are all sent to different projects and customers.

� Whenever a security patch needs to be installed it takes about three weeks to have all
“decision makers” sign the written request so the sysadmin can actually do the job.

There should be a column in the “security” column group for this. It should show the
impact on the functional systems involved, i.e. “three weeks uncontrollable attack threat
per occurence”. Together with an estimate of the likelihood of a successful attack and the
subsequent damage this should explain the situation even to non-geeks.

4 What’s Next?

Now that we have a systems health matrix, what do we do next?

Well, that depends on what the intention was to create the matrix. You may decide that
the system is technically in such a hopeless shape that it’s time to “face new challenges”. You
may decide that there are plenty opportunities to improve your working life and improve those
issues that are within your control, prioritizing them according to the overview you’ve got from
the matrix.

And you may want to confront management with the situation. If you want to do that, just limit
yourself to the functional subsystem and entire system row groups. These are what management
and/or your business user will understand. At least, from then on nobody can blame you when a
desaster strikes that “you never told us”. Which doesn’t really help anybody, of course.

Maybe management takes over at this point and uses the matrix to improve their risk man-
agement, ressources and financial planning.

In many cases the matrix can help to improve communications between technical personnel
and management, giving them a chance to change a system in a timely and undisturbing manner
to make it economically competitive.

And maybe, in the far future, even the average management will learn to understand its IT
systems as obviously quite dynamic things in a highly dynamic environment; that it doesn’t pay
to rush them into existence with a project just to consider them another “solved problem” that
can be forgotten—until the problems increase beyond the pain threshold again, triggering another
project.

Well, maybe.

Epilogue

This is the manuscript of the final talk of the German Unix Users Group (GUUG) “Frühjahrs-
fachgespräch” (FFG) 2003 held on March 28, 2003 in Bochum, Germany. Special thanks to

Copyright 2003 Benedikt Stockebrand

After the Boom: A Health Check for IT Systems 16

Wolfgang Sachs and Jochen Topf for giving me the opportunity to present the ideas from this
manuscript on such a prestigious occasion.

I always enjoy suggestions and comments about the subject presented here. The easiest way to
contact me is e-mail to me@benedikt-stockebrand.de. There are some more ressources available
at my home page, http://www.benedikt-stockebrand.de, concerning IT reengineering, system
architecture and project management.

References

[DeM93] Tom DeMarco. Why does software cost so much? In [DeM95], chapter 1. Dorset House,
1993.

[DeM95] Tom DeMarco. Why Does Software Cost So Much? Dorset House, 1995.

[RR00] Sharon Marsh Roberts and Ken Roberts. Do I want to take this crunch project? In
[WBK00], pages 25–42. Dorset House, 2000.

[WBK00] Gerald M. Weinberg, James Bach, and Naomi Karten, editors. Amplifying Your Effec-
tiveness. Dorset House, 2000.

[You97] Edward Yourdon. Death March—The Complete Software Developer’s Guide to Surviving
“Mission Impossible” Projects. Prentice Hall, 1997.

Copyright 2003 Benedikt Stockebrand

