
How to Make Sure That Nobody Will Ever

Use My Excellent Software (Twice)

Benedikt Stockebrand

EuroBSDCon 2006

Milano, November 12, 2006

Abstract

One of the greatest successes that a coder can achieve is writing a piece of excellent software and

at the same time ensuring that nobody will ever use it—or nobody will ever use it twice.

This talk presents a number of real-world highlights that show how minimum effort can achieve

maximum devastation, teaching even the most stubborn user or administrator a lesson it deserves—a

lesson to stay away from my software.

Understanding the Enemy

As in any battle the first step to victory is a thor-
ough understanding of the enemy. For our purposes
it pays to distinguish four different subspecies: The
end user, help desk staff, administrator and man-
agement; they all have different vulnerabilities and
should therefore be treated specifically.

The End User

The most clueless victim is the end user. It has the
least possible grasp of technology and notoriously
refuses to read documentation of even error mes-
sages, usually either complaining of “techno bab-
ble” or pointing out that it doesn’t understand En-
glish documentation. The end user comes in two
varieties: Private and business end user.

The private end user is easy to handle; if we
just frustrate it enough it gives up using our soft-
ware quite quickly.

The business end user is usually told by its man-
agement what to do and can’t just give up on our
software. Dealing with it directly can be fun be-
cause it can’t really defend itself, but usually we
can only teach it to be terrified of our software, but
can’t really make it stop using it.

The Helpdesker

The business end user is usually supported by a
help desk team. The helpdesker usually has a bet-
ter grasp of the English language, sometimes en-
abling it to read and understand end user docu-
mentation. It is technically marginally clueful and
tends to gather quite a bit of experience from deal-
ing with all the problems its end user has.

Like the end user, the helpdesker generally
doesn’t have much of a choice of the software it has
to support. Unlike the end user, the helpdesker is
a notorious job hopper, so it is feasible to convince
it to hop its job even faster than usual if we write
our software accordingly.

The System/Network Administrator

Beyond the help desk hides the system and net-
work administrator. It is at least semi-clued; in
some cases it may even have developed basic cod-
ing skills. It tends to understand even technical
documentation, even if it is written in English.

The admin is usually overworked and has to deal
with a wide range of systems. It usually doesn’t
have time to get into all the details of all the sys-
tems it take care of and therefore spends a ridicu-
lous amount of time searching documentation over
and over again for details it needs to solve the prob-
lem at hand.

A major part of its working hours the admin
spends troubleshooting. This gives it an enormous
routine to stay cool even in an “exceptional failure”
situation—it is just daily business to the admin. A
good admin works with great care even in a ma-
jor emergency situation where every minute costs
dearly (but bad admins won’t).

At least the senior admin may occasionally be
trusted to decide which software to use by its man-
agement. So at least in some cases we must consider
it a direct target throughout our efforts to prevent
it from using our software.

1

Benedikt Stockebrand How to make sure that nobody will ever use my excellent software (twice)

Management

The ultimate target however is management. The
Manager isn’t even proper business end user by
qualification because it has its underlings to do the
business end using. But it is the one who is “in
charge” and in many cases it will decide for an en-
tire company to stay away from our software.

This is a blessing for us. Since the manager
doesn’t have the technical competence to realize
that our software is excellent, we can achieve our
goal without sacrificing any of the excellence of our
software.

The only problem with management is that it is
hard to reach. But once it gets alarmed it is bound
to make some heavy-handed decisions against using
our software, no matter what its technical qualities
are.

The Software Lifecycle:

A Monetary View

The key strategy to deterring the prospective en-
emy from our software is hitting it where it hurts
it most: at its wallet. If we hit hard enough and
at the right moment, then we can’t but succeed in
our mission.

Hitting hard is a matter of the tactical weapon
we use; we’ll take a look at our armory in the next
section. But hitting in the right moment is even
more important than the way how we hit. This
leads to a brand new sort of software lifecycle, one
that focuses on what happens when the software
gets shipped to the enemy and how it relates to its
money.

On a side note: There is a common strategy
pursued by certain “consulting companies” which
“do the IT projects” for an IT-illiterate customer.
Then run up such a huge bill that the customer’s
management can’t possibly admit to the sharehold-
ing public that the “consulting company” delivered
an entirely useless heap of junk, so they declare
the project a “success” for “political reasons”. The
result is almost exactly the opposite of what we
want to achieve: They make their customers use
disastrous software, while our intention is that we
want to make the enemy not use our excellent soft-
ware. Both strategies do have one thing in common,
though: Both will drive the admin crazy and quite
likely away from that company.

Evaluation

When a data center intends to install new software,
it usually starts with an evaluation of the various
alternatives available.

At this point it is generally easy to deter our
prospective enemy: Bad documentation and pos-
sibly some wanton flaming in the support mailing
lists explicitly set up for the new enemy usually do
the trick.

At this point it is also surprisingly difficult to
deter the prospective enemy in the long run: There
is little money and time involved yet, so the enemy
may decide to give our software another try later
on.

Installation and Configuration

At the end of the evaluation phase the enemy
chooses a software. During the following installa-
tion and configuration phase we can apply a variety
of attacks.

But generally this is not the best time for an
attack since there is still too little money involved.
Instead we should keep a low profile, try to ap-
pear helpful and give the enemy the impression
that there won’t be any problems with our soft-
ware. The installation and configuration phase is
the last chance for the enemy to retreat without
major losses.

Only if the installation and configuration phase
is managed as part of a software project with the
customarily infeasible deadlines, then some stealthy
tactics to delay the installation and configuration
may be worth a thought.

Production

After the initial installation and configuration
phase the enemy finally places itself at our mercy.

Sometimes it realizes this and tries to negotiate
its surrender through a “pilot phase” that it doesn’t
consider regular operations. Often the administra-
tor is particularly vigilant when then it puts a sys-
tem into production. But hurting the enemy is pri-
marily about hitting its wallet, so at this point the
enemy can’t possibly escape our wrath any longer.

There are three basic attack lines relevant to
production systems: We can make regular oper-
ations excessively expensive, create havoc during
upgrades including security patches, and lay some
fatal traps that only bite the enemy when it already
struggles with another problem.

Regular Operations

To attack the enemy during regular operations we
must make operations as expensive as possible. If
we make the software difficult to use, then the
end user is the first to give up, causing excessive
workload to the helpdesker which needs additional
manpower which costs the management additional
money.

2

Benedikt Stockebrand How to make sure that nobody will ever use my excellent software (twice)

Similarly, we can make administration more ex-
pensive than necessary. Any software that makes
daily operation a tedious routine job or requires
extensive knowledge and experience in widely dif-
ferent and unrelated areas will be considered an
excessive expense by our involuntary accomplice in
management, which calls itself “controlling”. While
this may sound fairly unexciting to a software de-
veloper, the sums involved can be large enough to
drive the enemy manager to despair and therefore
away from our software.

Another useful strategy related to regular oper-
ations are excessive requirements for service down-
times. While these can be scheduled in advance,
they still put a burden on many installations.
Again, the financial losses during downtimes can be
substantial enough to convince th enemy manager
to convert to an inferior software.

Finally, problem hiding is a way to drive the
enemy to despair: If it never really knows if ev-
erything works as expected or if some problem is
quietly creating some yet unseen havoc, then it will
quickly decide that it doesn’t want to use our soft-
ware anymore: The admin is permanently stressed
from worrying if everything works and the manager
considers the software as well as the admin unreli-
able, which is reason enough for either one to look
for an alternative to our software.

Upgrades

The enemy is even more vulnerable during up-
grades. Of course it knows about this and avoids
upgrades whenever possible. But if growing sys-
tems, increasing reliability requirements, exciting
new features, support for new hardware or ending
support for older software versions don’t convince
the enemy to face the upgrade, then an exploitable
security hole will.

The only defense it has is extensive pre-
production testing. A reasonably experienced en-
emy will avoid haphazard upgrades and rather
spend time and money on preliminary tests. But
duplicating an entire datacenter environment dou-
bles the expenses, so in many cases the enemy only
has a limited test environment used for multiple
software installations in turn. So a pre-upgrade test
works like this: Somebody decides that an upgrade
is necessary, then a time slot for the test environ-
ment is allocated, a large number of tests are done
in short time and afterwards the enemy will still
worry if it missed the one crucial thing to test that’ll
blow up in its face. If we don’t leave it a chance
to revert to the old version this situation will make
the enemy grow old way before its time.

With desktop machines the situation is differ-
ent: A test environment doesn’t need as many
desktop machines as there are desktop machines

in use, which saves some money on the test hard-
ware. But rolling out an upgrade to several thou-
sand machines running a large variety of applica-
tions is quite similarly scary.

The obvious strategy of throwing a monthly
batch of updates plus the occasional “extra urgent”
security fix at the enemy is well-known and has
proven useful over and again. It does however re-
quire an unacceptably low level of software excel-
lence to be applicable, so it is less useful to deter
the enemy from using our excellent software.

Still, there are other means to send the enemy
to the upgrade hell; we’ll see examples below.

System Failure

Finally, there is the ultimate victory scenario, the
one scenario that strikes the very heart of the en-
emy.

The new junior admin, which was just hired
three weeks ago, is on weekend call duty for the
first time. On Sunday morning, 03:00, its mobile
phone rings. The admin answers, only to hear “ma-
chine XY Z doesn’t work, come here and fix it im-
mediately”. Of course, it has never ever heard of
machine XY Z, but it drives to the data only to be
welcomed by an unscheduled meeting of the man-
agement board with the words: “Do you actually
realize that every minute of this costs us 50 000 e?”

Of course, the very same scenario applies to se-
nior admins in large enterprises if the 50 000 e are
substituted by a more adequate number. The sky
is the limit here: Occasional rumors claim that the
Deutsche Bank will be bankrupt within 24 hours
if their entire IT breaks down. For the recent
two-hour failure of the Spanish top level DNS do-
main no numbers seem to be available, but at a
national economic scale the losses caused by this
might just possibly exceed 50 000 e/minute, or
3 000 000 e/hour—by a few orders of magnitude.

This scenario is so valuable for a variety of rea-
sons. Of course, the immediate economic impact is
obvious: we hurt the enemy where it hurts most—
at its wallet. Besides that, we score multiple severe
psychological hits: The end user gets upset because
it can’t work. The helpdesker gets upset because it
has to answer the phone calls of the end user while
it doesn’t really know what’s going on. The admin
feels seriously embarrassed because it appears inca-
pable of keeping its systems up and running. The
manager feels helpless because it has no idea what’s
going on or how long it will take to fix, but a rea-
sonably precise idea of the huge losses per minute.

Even in situations far less dramatic than those
mentioned it is quite simple to make our software
so expensive to use that the enemy will eventually
give up and leave our software alone; we just need to

3

Benedikt Stockebrand How to make sure that nobody will ever use my excellent software (twice)

make system failures expensive. We can make fail-
ures happen often, and we can make them last long.
Beyond that we can make it impossible to repair
the system completely by introducing inconsisten-
cies during the failure; this will make it necessary
to roll back to the last working backup, losing all
data changes since then. All three approaches can
be combined and put enough economic pressure on
the enemy to convince it quickly to use some other,
less excellent software than ours.

If we want to keep the level of excellence of our
software, we can’t resort to causing the problem
within our software; instead we must ensure that
the “cause” of the problem lies outside, usually ei-
ther within the system environment or the user or
admin operating it.

Masterpieces of Deterrence

Now that we understand the enemy and its vulner-
abilities, we can understand and assess the various
tactics available to us. After so much theory we now
follow a more practical approach and take a closer
look at successful examples of enemy deterrence.

Documentation

Documentation-based deterrence measures are
quite common, often because documentation isn’t
really considered part of the software and thus ex-
empt from the goal of excellence. But even if we
consider documentation part of the software, there
are some excellent tactics available.

The most obvious tactic related to documenta-
tion is used by various low-budget hardware ven-
dors: Write the documentation in whatever lan-
guage we are unfamiliar with, then run it through
babelfish to translate into Albanian, and then have
a native Chinese speaker translate the result into
English. As long as we don’t consider documenta-
tion part of our software, this approach is generally
known to work as expected. Unfortunately, the en-
emy will quite likely notice this during evaluation,
so the impact is very limited.

A more effective, diametrally different approach
involves a native English speaker linguist specializ-
ing in classic English literature polishing the doc-
umentation to unsurpassed beauty: While the lan-
guage of Shakespeare, Melville and Thoreau may be
most elegant and stylish, it is impossible for a non-
native speaker with a more limited grasp of English
to understand any of this.

The Debian1 project came up with a nice way
to deal with missing documentation: There is
an undocumented(7) man page that the package

maintainers generously use as a substitute for non-
existing man pages. The subtle psychological effect
of this is quite remarkable: The enemy will almost
invariably interpret this helpful note as “I know I
let you down; sue me.”

Beyond that, Debian Woody made generous use
of the Linux-specific ip command to configure its
network, rather than the ifconfig, route, arp and
various other commands commonly used with Unix.
The documentation available came in three vari-
ants: LATEX source code with more than 80 chars
per line to make it less readable on a text console,
DVI intermediate output and PostScript. The sub-
tlety of this is brilliant: During the evaluation, in-
stallation and regular operation it is quite likely
that the enemy will simply use this documentation.
Only when a problem occurs that drops the enemy
into text mode only will it realize that it can’t any
longer read the documentation it desperately needs.

FreeBSD 6.1 installs with a file IMPLEMENTATION
in /usr/share/doc/IPv6 which states right at the
beginning that it doesn’t relate to the KAME IPv6
stack integrated with NetBSD 1.5.1, but might still
be useful. Following that the table of contents has
an entry “7.2 Multipath Routing Support”. Ex-
cept of course that chapter 7 covers coding style
and there is no section 7.2. So if the enemy doesn’t
bother to test for multipath routing support during
the evaluation period but relies on the assumption
that it can use multipath routing later on because
it was mentioned in the table of contents, then the
enemy will stumble over this only when it tries to
use multipath routing when the system is hopefully
already in production.

The man page for dig with FreeBSD 6.1 shows
a date of June 30, 2000. During the last six years a
variety of changes to the dig command have found
their way into the source code. It takes a very close
look to realize that only the date hasn’t been up-
dated in the man page but everything else has. In
a high stress situation like troubleshooting this tiny
little lapse will easily extend the downtime by sev-
eral minutes; the average enemy admin tends to
be overly careful when working in production ma-
chines and won’t really trust this man page until it
has verified that its contents is actually up to date.

The man page for cvs starts with this note:
“This man page is a summary of some of the fea-
tures of cvs but it may no longer be kept up-to-
date. For more current and in-depth documenta-
tion, please consult the Cederqvist manual (via the
info cvs command or otherwise, as described in
the SEE ALSO section of this man page).” Again
this is a gem: During evaluation and installation
the introductory style, texinfo based manual is gen-
erally preferable over a man page. But when a
problem occurs, then a more concise, reference-style

1OK, “Debian GNU/Linux”, if you insist.

4

Benedikt Stockebrand How to make sure that nobody will ever use my excellent software (twice)

man page is needed, not a lengthy tutorial-style info
file. And we have shown all the goodwill the enemy
could ask for: We have provided a reference man
page as well—if it assumes that the man page is
unreliable, well, that’s its own decision.

Support

Similar to documentation, support is often not con-
sidered part of the software proper and therefore
lends itself well to various tactics. Some of them
are more commonly seen with commercial software
vendors, but they are still inspiring enough to be
mentioned.

It is common to discontinue support for old soft-
ware versions as soon as possible. Together with
promises of new features, this is a common way
to lure the enemy into upgrade hell and no par-
ticular surprise. Several years ago SUN support
vastly improved this tactic: Whenever the enemy
tried to open a problem call they would first de-
mand that it updated the system with the latest
“recommended patches”. With this strategy they
managed to force the enemy to deal with a sys-
tem failure while in upgrade hell at the same time.
Unfortunately, the enemy eventually realized de-
veloped a counter-strategy of demanding a written
guarantee that the new, untested “recommended
patches” wouldn’t affect the system adversely but
actually helped to solve the problem at hand.

Open source projects offer another line of tac-
tics: Since support usually isn’t paid for, it is eas-
ily possible to repel the enemy by simply telling the
truth: “If you can’t read the source and figure it out
yourself, then get lost. I can’t be bothered to write
documentation and I definitely can’t be bothered
to tell anyone how to use my excellent software.”
If we do this only after the enemy has reached the
problem-solving state, then a few well-chosen in-
sults will quickly deter it from using our software
once and forever.

Wanton Limitations

Another set of tactics relate to imposing wanton
limitations on the software or the system it runs
on.

Limitations that relate to the software itself are
usually a sign either of bad software or unscrupu-
lous money-making: The various size limits for
IDE hard disks imposed on various generations of
BIOSes are all signs of bad software design; selling
different kinds of system phones to different PBX
systems has been used by phone manufacturers to
force the enemy to replace not only the PBX but
also all the phones in a company as soon as the
company grew beyond the capacity of the old PBX.

Either way, while these tactics are proven to be ef-
fective they can’t be applied to excellent software
too easily.

A more useful and less conspicuous way to im-
pose artificial limitations involves interference with
other software. Back in the Good Old Days[TM]
it was impossible to install both what later became
FreeBSD/NetBSD and DOS on the same hard disk,
simply because BSD didn’t support PC-style parti-
tion tables. Since this will usually be noticed dur-
ing evaluation, the impact on the enemy isn’t too
exciting, but it quite effectively scares it away. Mi-
crosoft has refined this to the “Windows DLL hell”:
If different programs need different versions of a cer-
tain dynamically linked library (DLL, the Windows
equivalent of a shared library), then they can’t run
on the same machine.

Excessive Dependencies and the
Autoconf Trick

Even more useful and less conspicuous are excessive
dependencies.

Solaris 10 offers “zones”, the Solaris equiva-
lent of FreeBSD jails (but with IPv6 support).
These zones can’t be used without installing re-
source pools, which need a Java runtime, which
need X11 even on a server with a serial console and
no video hardware.

Again, this can be improved. The autoconf-
generated configure scripts commonly used by open
source projects can be easily used to create exces-
sive dependencies that we can blame the enemy for:
If it finds KDE, why not use it? And GNOME too,
and a Java runtime and SSL and SNMP and an
OpenOffice programming interface. Now if the en-
emy builds our software on its desktop machine,
then it has no choice but to install all these things
on the final destination machine, too. We can’t pos-
sibly be blamed because our software doesn’t really
“depend” on these dependencies, it just makes use
of them if they are available anyway. And next
time the enemy builds our software again, chances
are that it has installed yet some more software
on its desktop machine and if it installs the newly
built software on the destination machine it will fail
because the enemy hasn’t installed the additional
software there, yet. Beautiful.

All these tricks also open the path for addi-
tional fun with respect to security: If our software
uses some insecure dependency, like the intrinsi-
cally insecure SNMP, or anything with a less-than-
impressive security history, like a certain commer-
cial web browser, then we can use these dependen-
cies to force the enemy into upgrade hell more often
than it can handle.

5

Benedikt Stockebrand How to make sure that nobody will ever use my excellent software (twice)

Configurability

To make software excellent we must make it con-
figurable to the enemies needs. So if we want to
preserve the excellence of our software, we can’t use
configurability as a weapon against the enemy—or
can we?

The Asterisk IP telephony software offers a
highly configurable “dialplan” configuration which
defines the behaviour of the software. Its lines must
be numbered like ancient BASIC programs. Unlike
BASIC programs the line numbers must be con-
secutive. Errors cause a jump to the current line
number plus 101, so if an error in line 7 occurs,
line 108 will be executed next. A local Asterisk
expert summarized this in this way: “If you want
to write a dialplan, then do it in a single day. If
you don’t, then on the second day you won’t un-
derstand what you have done the day before and
start from scratch.” This makes any configura-
tion change later on a nightmare to the enemy; the
first time a change is necessary, it takes all day
and breaks some previously functional features will
quite likely encourage the enemy to look for an al-
ternative solution.

Another example is the traditional
sendmail.cf to configure Sendmail. Besides the
syntax, which is annoyingly difficult to understand,
a Sendmail configuration has to be fairly large.
Writing a sendmail.cf from scratch is quite de-
manding and requires detailed understanding of
the SMTP protocol to keep the result standards-
compliant. Unfortunately somebody made the huge
mistake to write an m4 macro package that gener-
ates a sendmail.cf from a fairly short and readable
configuration file.

The traditional sendmail.cf offered an exces-
sive degree of configurability that virtually nobody
needs anymore today. DECNET, BITNET and
UUCP are effectively dead, but still Sendmail has
everything necessary to support them. Again, if it
wasn’t for the m4 macros this would serve quite well
to make the enemy switch to Microsoft Exchange
without looking back.

Even with just a few configurable parameters it
is possible to make configuration tedious and error-
prone simply by using bad default settings. Solaris
uses a default prefix length (“netmask”) setting of
/128 for IPv6 addresses even though RFC 4291
and its predecessors explicitly state that the pre-
fix length for all but a few special address ranges
is always /64. Configurations which appear to be
correct, but aren’t, can easily confuse the enemy
for some time.

The Solaris installer creates an /etc/hosts file
which assigns the name loghost to the IPv4 loop-
back address. In an environment that uses a cen-
tral log host and a name server, this leads to an

inconsistent configuration until the enemy fixes ei-
ther the resolver configuration or the /etc/hosts

file. If it has also enabled IPv6 support on the
system, then the same procedure repeats with
/etc/inet/ipnodes for the IPv6 loopback address.

Another tactic is generously applied by most
Unixen: The hostname is often spread all over
/etc, making it a tedious job to just rename a sin-
gle machine.

Configuring a Fedora Core 2 box as an IPv6
router shows how to use an inconsistent con-
figuration syntax to confuse the enemy: In
/etc/sysconfig/network the lines

NETWORKING_IPV6=yes

IPV6FORWARDING=yes

IPV6_ROUTER=yes

show how mixing underscore and no-underscore no-
tation and prefix and postfix category naming can
be easily applied to confuse the enemy admin. Of
course, if the file was read by a proper parser, then
it could flag parsing errors if the keywords were mis-
spelled. But this file is a shell script, so if one of
the variables is misspelled there won’t be any visi-
ble problems—except that the router doesn’t work
as expected.

Finally, Solaris 10 introduced the “service man-
agement facility” (SMF) as a substitute for init

and the SysV-style init scripts. It speeds up the
boot process, deals with dependencies between ser-
vices and is far nicer to handle than traditional init
scripts—until the enemy needs to change the set-
tings for a service: Then it will face a configura-
tion “data base” that keeps binary representations
of lengthy XML-based “service manifests”. Edit-
ing an XML file with vi is great fun to watch the
enemy do, especially if it is sitting at a VT100 ter-
minal trying to solve a problem that just brought
a system down.

The beauty of all these tactics is that they ap-
pear nothing more than a slight awkwardness. If
the enemy loses time because of them, possibly at
50 000 e per minute, then that isn’t our fault, re-
ally. And it will lose time because of them. Lots of
time.

Change handling and Upgrades

All tactics so far deal with a “static” software that
doesn’t change over time. In practice, virtually all
software is continuously changed, updated and ex-
tended. We can use this to hit the enemy when it
hurts a lot: during upgrades.

Again we can learn from various hardware ven-
dors who sell different components under the same
name. If you have ever seen the enemy trying to
replace a broken network card with a new card of
“the same model” you know the beauty of this plot:

6

Benedikt Stockebrand How to make sure that nobody will ever use my excellent software (twice)

Of course the new card doesn’t work, so the enemy
assumes that something else is the problem. After
replacing virtually everything else in the machine
it might finally “re-install the driver” from the CD-
ROM shipped with the new card and surprise, af-
terwards the machine works again—until the next
major upgrade is mass-deployed to all machines and
this one with the “same model” network card loses
its network connectivity in the process. The loss of
service may sum up to several days in the long run.

The same can be done with software. The
beauty of the BSD ports collections is that they
usually obtain the source files from the original
source of the software. If a source file is kater on up-
dated there, then the ports collection makefiles will
reject that source file as “broken” since it doesn’t
match the stored checksum. To rebuild a working
system the enemy will first have to upgrade its ports
tree and then recompile all and everything. If the
timing is right, there will be new releases of KDE,
GNOME, OpenOffice and a variety of other large
packages, causing all sorts of minor problems that
are tedious and therefore expensive to fix.

The BIND name server package did a very
sneaky trick with the upgrade from 8.2.2 to 8.2.3:
They called 8.2.3 a “maintenance release” that
didn’t change any functionality but just contained
bugfixes. Which was perfectly true, except that
they changed the way dig handled the -x option
with IPv6 addresses: Instead of looking up the ad-
dress in the (by then deprecated) bitlabel format,
they changed it to use the (by then re-established)
nibble format. The results to various shell scripts
using dig to query the DNS could have been most
satisfying; unfortunately it was way too early for
pulling this trick, so only a single IPv6 advocate
writing a book on the topic was seriously affected.

In a project that I was involved with some years
ago, the closed-source software vendor forced the
enemy to upgrade to a new release. The software
was meant as a micro-billing system but the enemy
used it as a means to gather statistical data only.
The upgrade involved various reorganizations of the
data bases which the vendor claimed not to require
any additional disk space. The script they supplied
to the enemy to do the reorganization was expected
to run two weeks, during which the system couldn’t
gather any additional billing data. Most unfortu-
nately, the enemy employed a single better-than-
average application admin which managed to first
split the script into about twenty separate steps.
Taking data base dumps after each step it was able
to revert to the results of the previous step after
the occasional failure. In one case it temporarily
doubled the disk space by acquiring a second ex-
ternal storage array before continuing. The entire
upgrade took almost five weeks; afterwards said ad-
min left the project. If the enemy had actually used

this system for its billing, then this plot would have
sent it straight into bankruptcy.

As these examples show, it is both feasible as
well as worthwhile to drive the enemy into upgrade
hell. Watching it squirm, trying to delay the up-
grade while it fully realizes that it can’t possibly
escape it in the long run, is one of the most satisfy-
ing experiences in every software developers career.

Security Aspects

Of course, excellent software is also secure. The
Sony “no other notebook brands are affected” line
concerning their exploding batteries is about as in-
applicable as Microsoft’s “our primary goal now is
to improve security” while they still ship their In-
ternet Explorer with ActiveX support and Office
with VBA. So how can security aspects help to de-
ter the enemy?

There is a technical tactic that is applicable: We
can add user-configurable support for inherently in-
secure features, like support for SNMP “set” oper-
ations; this leads back to the configurability topic.

As a psychological trick we can simply deny all
alleged security problems in a manner that shows
the enemy that we feel personally offended by its
allegations and no, there is no security issue at all.
Then if there ever is an issue, then the enemy will
deeply distrust the security of our software.

Incompatibilities

Most of todays datacenter environments are highly
heterogeneous. Incompatibilities, ranging from
straight non-interoperability down to slight varia-
tions between different Unixen make life more dif-
ficult to the enemy while there is no single Unix to
blame.

Several years ago I witnessed the enemy buying
three PCI cards of different types to be put in a sin-
gle machine. Any two cards worked together flaw-
lessly, but all three together rendered all available
test machines unbootable. All three card vendors
blamed the others on the problem and refused the
enemy a refund for their respective card.

Back in 1998 a Solaris NFS server and a Linux
NFS client would manage to transmit approxi-
mately 100 kB/s between each other. Solaris-
Solaris or Linux-Linux setups would easily do 1–
3 MB/s. Unfortunately the enemy found ways
to tune the Linux client in a way that raised the
throughput quite significantly, but still the perfor-
mance was less than satisfying.

Simply using different option letters for the
same command makes scripting difficult to the en-
emy and can wreak the occasional havoc that the
enemy admin fears: The netstat command with
both Solaris and the BSDs uses an option -f inet6

7

Benedikt Stockebrand How to make sure that nobody will ever use my excellent software (twice)

to request IPv6-related information; with Linux it
is -A inet6. Various Solaris commands like df use
the -h option not to display a short command syn-
opsis but to render their output in a “human read-
able” style.

So far these incompatibilities are mere nuisances
to the enemy. But a Solaris box in a mostly BSD-
derived environment will eventually embarrass the
enemy admin with a gem that looks basically like

/usr/sbin/shutdown -g 10 -i 5 -y \

Shutting down in ten minutes

System going down in 10 seconds

The ultimate incompatibility example is the
killall command. With Linux and the BSDs it
kills all processes with a given program name but
with Solaris and other true SVR4 Unixen it will do
what its name suggests—it will kill all processes,
shutting down the system the hard way. Linux has
a command killall5 which behaves like the SVR4
killall and Solaris has a command pkill which
behaves similar to the Linux/BSD killall com-
mand. Eventually the enemy will learn to be very
careful about the killall command; usually it will
learn the hard way.

Error Handling

When an error occurs within our software, be it an
internal problem or bad input or a problem with
the environment it runs in, like a full file system,
then we can apply some more tactics.

If we didn’t care about the excellence of our
software, then we could simply send a cryptic error
message of the “General Protection Fault” style to
the enemy and then ask it to decide if it wants to
“Abort, Retry or Continue?” Especially if we don’t
define a default decision for the enemy it will feel
completely lost.

We can also write all logging entries into a sin-
gle file, mixing debugging information, notices and
more or less serious error conditions into a sin-
gle file. If we don’t include time stamps and use
multi-line messages that aren’t even separated by
newlines, then the enemy will have great trouble
to monitor this log file. If we use standard block-
buffered I/O for this file “for performance reasons”
and “forget” to open the file in append-only mode,
then the enemy can’t add periodic timestamps to
the file, the most recent entries are either missing
or incomplete due to buffering and if the writing
process crashes, then the most vital last entry is ef-
fectively unavailable for cleaning up the mess. The
billing software mentioned above has proved that
this approach is both applicable and effective; un-
fortunately the effects on the excellence of our soft-
ware usually forbid this tactic. Excellent software

uses the syslog(3) API and even sets the priorities
of each log message to a reasonable value.

Similarly, using the assert() macro or simply
dumping a Java backtrace is generally considered
bad style. The rsync(1) command tries to flood
the enemy with information it can’t use; a full file
system at the destination first provides an “XXX
write failed, filesystem is full” message and then
follows up with seven additional lines that the av-
erage enemy can’t understand, including the source
file names and line numbers where the related sec-
ondary errors occurred.

My personal favourite in this category is Debian
and how it deals with the IPv6 configuration in
/etc/network/interfaces. As mentioned above
the prefix length is effectively always 64 bits. So a
configuration like

iface eth0 inet6 static

address 2001:db8:fedc::1

provides all the information necessary to configure
interface eth0 for IPv6. Still, the ifup command
will complain that

Don’t seem to be have all the

variables for eth0/inet6.

Failed to bring up eth0.

Only after adding a line netmask 64 to the con-
figuration will the interface configure. The artful
combination of a grammatical mistake in the er-
ror message, explicitly demanding a constant to be
configured, using an IPv4 term “netmask” for an
IPv6 prefix length and finally denying any hint at
the problem in the error message will make it ab-
solutely plain to the enemy that it isn’t welcome to
use this software.

High Risk User Interfaces

Finally, the ultimate weapon against the most stub-
born enemy is a high risk user interface. This is the
software equivalent of a gun without a safety catch.

This tactic is commonly cloaked by asking the
enemy for explicit confirmation for even the most
simple operations: “Do you really move this file to
trash?” asked for every single file out of five hun-
dred will quickly teach the enemy to confirm what-
ever the system asks. Not only will this result in the
same net effect as not asking for any confirmation
at all, it will also annoy the enemy and, most impor-
tantly, it will make it confirm whatever really dan-
gerous operation it accidentially invokes. Exposing
the enemy to Microsoft Windows will quickly make
it reach this “whatever it asks, just hit Return”
mentality.

8

Benedikt Stockebrand How to make sure that nobody will ever use my excellent software (twice)

Solaris 10, 06/06, first made the excellent zetta
file system (ZFS) available to the public. ZFS man-
ages multiple file systems within a storage pool. To
remove such a file system from a pool, the command

zfs destroy 〈file system〉

will destroy a file system without further confirma-
tion. But there’s more to it: ZFS supports snap-
shots, which are named 〈file system〉@〈snapshot〉.
To remove a snapshot, the command is

zfs destroy 〈file system〉@〈snapshot〉

and again it doesn’t ask for confirmation. It is only
a matter of time until the enemy wants to release a
snapshot but accidentially nukes an entire file sys-
tem. This example more than compensates the lack
of even the remotest hint of subtlety with the enor-
mous degree of devastation it can cause.

The beauty of high risk user interfaces is obvi-
ous: Whatever happens, it is the enemies fault, not
ours or that of our software.

Summary

We have seen that there is a wide choice of
low-effort, devastating-impact tactics to discourage
even the most stubborn enemy from using our ex-
cellent software. Most of them can be made to
appear “accidential” or “slightly awkward” rather
than intentional and malicious.

With these weapons available and properly un-
derstood we can easily teach the enemy never to
use our excellent software (twice).

About the Author

Benedikt Stockebrand is a BSD-
biased ”generic Unixer” with a
strong background in system ad-
ministration and large-scale data
center design and operation. He
is working as a freelance trainer,
author, IT journalist and consul-
tant with a current focus on IPv6
operations.

He has been repeatedly charged with offensive
sarcasm but so far escaped conviction.

9

