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Preface

About this Manuscript

This manuscript is intended to accompany a talk I held on April 19, 2002 in Frank-
furt/Main, Germany. It presents one aspect of several I am currently trying to
weave into a presentable methodology related to large, reliable and economically
efficient IT systems.

I’ve tried to integrate at least part of the feedback I received during and after
that talk into this manuscript. Some ideas however deserve additional research;
I have left them for a later time, when I’ll be attempting to cover a larger part
of the methodology presented. Occasionally it should become obvious that this
manuscript is little more than a snapshot of some work in progress and an invitation
for comments (best directed to bs@benedikt-stockebrand.de). I sincerely hope it
will be of some use to you anyway.

Throughout the manuscript I’ve tried to maintain an image of the atmosphere
during that event—including the occasional jokes and snide remarks. If you feel
annoyed by them or consider them “unprofessional”1 you are advised to ignore the
footnotes.

Acknowledgments

I thank my teachers at Dortmund University, Prof. Ingo Wegener and Prof. Mar-
tin Dietzfelbinger who taught me about all sorts of theory including parallel and
distributed algorithms, and Prof. Heiko Krumm, who taught me a lot (if not all)
about the not so theoretical problems of distributed systems.

I also thank my colleagues from the “Data Center Management” team at T-
Online International AG for uncounted discussions and the good and sometimes bad
examples that convinced me that the ideas presented here are not only a practically
infeasible theory but an applicable real-world approach towards building large IT
systems.

Finally, particular thanks to Wolfang Sachs, Peter Heimann, Martin Pfeilsticker
and Gerd Aschemann2. They initiated SAGE-Rhein-Main and made me write this
paper in preparation for a talk at the first meeting. That very meeting gave me
opportunity to gather valuable feedback from a large number of fellow professionals.
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1 Basics

Designing and building large systems has become ever more challenging during the
last three decades. This text presents an approach to deal with that challenge.

1.1 What are Large IT Systems?

In the context of this paper we consider as large IT systems, as opposed to complex
IT systems as presented e.g. by Glass [Gla98] or Britcher[Bri99], all IT systems that
need to span across multiple computers to handle the workload they are built for.

Aside from reliability issues that had to be left out of scope of this text there
are basically three reasons that may make a system large:

� There may be no computer available to handle the intended workload.3

� Since the bucks-per-bang ratio significantly increases with the size of the hard-
ware used, a single-computer solution may be economically unacceptable. A
farm of 256 networked PCs running a suitable Un∗x OS4 may not match the
performance of a high end server (call them Regatta, SF15k, Superdome or
whatever), but is easily an order of growth cheaper than the big-iron non-
competitors.

� Occasionally the software that the system is based on dictates what hardware
can be used, thus limiting the maximum machine size. This restriction usu-
ally has one of two reasons: The software may require a specific (low-scale)
hardware architecture or it may simply make use of only a limited amount of
hardware, like a maximum number of CPUs.

Two common terms related to this are “horizontal” and “vertical” scalability.
A system scales “horizontally” if it can be distributed about multiple independent
computers and it scales “vertically” if it can make use of multiple CPUs in a single
computer. In this context we focus on horizontal scalability.

1.2 The Deferred Split-Up Desaster

Since many IT systems are destined to grow, possibly faster than the performance
of the high end hardware, it is only prudent to build a system according to the
assumption that it may eventually become “large” according to this definition.

Personally, my first serious sysadmin activity was the re-build of a non-commer-
cial ISP server “farm” where my predecessors had first put everything onto a single
machine, then ran into serious performance problems, bought a second machine and
tried to move parts of the system onto that second machine. After several months
of unsuccessful attempts to move the most performance-critical parts to the new
machine it became not only obvious but a generally accepted fact that we were stuck
in a dead end: Both machines would only boot together, waiting for each other at
certain points. One machine crashing (which happened all too often for reasons
beyond the scope of this context) could always count on the solidarity of the other—
it would crash, too. And since 100 Mbit/s fast ethernet was still unaffordable at
best during that time, the network traffic between those two machines was becoming
a bottleneck just as well simply because the work was distributed between the
machines without consideration for the network traffic involved..

3The incompetence of certain software developers is unfortunately not bounded by the size of
the largest hardware available. . .

4Linux is far more popular than the BSD’s here. But then, Windows is far more popular on
desktop machines than MacOS. . .
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The lesson learned from that experience was that it is virtually impossible to
split a one-machine system up so it can be run in parallel on multiple machines.
There are inevitably some “minor” details that get missed during the initial one-
machine phase that turn up like a terminally sore thumb only when the system is
attempted to be split up.

1.3 Inherently Sequential Operations

Theoretical computer science shows that there are classes of problems (their word
for “functionalities”) that won’t parallelize. These problems do have real-world
relevance and in some cases you run into them. In many cases however the real-
world problem is a special case that can be parallelized with due diligence. But if it
happens that your problem is really sequential, the only reasonable approach is to
separate them from everything that can be parallelized and have the core problem
run on a reasonably big machine. If there is no such machine, you lose.

Similarly, there are problems that can be done in parallel but there is no imple-
mentation readily available. Generally, such problems deserve the same approach.

1.4 Large-Scale Functional Separation

The first step when defining the architecture of a large system is the separation of
functionally independent components. If there is any chance that a system may be-
come large, there is no reason to put unrelated functionalities on the same machine.

What can possibly go wrong if you as a tiny ISP put a relational data base, an
SMTP gateway, a DNS forwarder, and a Tacacs server on the same machine? You
may eventually need to split things up.

The first thing that will probably hit you hard is the fact that you need to
adjust all sorts of host name configurations. Even if you’ve been smart enough to
provide DNS aliases for all services, like “db(.stupid.example.com)”, “smtp”, “dns”
and “tacacs”, all referring to “server”, you’ll only find out that in a variety of config
files you have placed either “server” or the IP address or the wrong alias. This
problem sometimes gets “fixed” by using different entries in the /etc/hosts on the
client machines—the long-term results of this “solution” should be obvious. Things
get particularly troublesome if external users are involved. It may be quite difficult
to explain to them that no, DNS and SMTP gateway don’t need to be on the same
machine.

Next you realize that the Tacacs server uses the DB and splitting the two may
cause noticeable authentication delays. Unfortunately the tacacs data has long since
been “synergized” with the remaining customer data so it is a major effort to pull
the tacacs data out of the original DB and build a Tacacs server with its own DB.
After all, you now need to keep two separate DBs in sync.

Just after you rebuilt your various Perl and SQL scripts to keep the two DBs
in sync you realize that the DNS zone files that need to be updated whenever
a customer shows up or leaves won’t update anymore: The fancy scripts you’ve
written to create the zone files put the new zone files on the DB server only, leaving
the DNS server out of sync. Of course, at least for a “temporary workaround”5 that’s
what NFS is made for. Unfortunately, the DB won’t fire up without a running DNS
server and the DNS server won’t work without the NFS server to get its zone files
from.

Finally, moving a DNS server to another IP address is one of the last challenges
in todays sysadmin world. . .

5You know what that means. . .
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It may be feasible to place several functionalities on the same machine using
chroot jails and dedicated IP aliases for the functionalities. But once a certain
system size is reached, chances are you’ll regret you ever tried to. If there is any
chance that the system will ever noticeably grow, functional separation is the only
way I know to avoid extensive downtime of a by then productive system.

Fortunately, functional separation is a widely accepted approach, not only for
large systems but whenever sysadmins successfully keep complexity low to maximize
reliability.

1.5 Small-Scale Structural Separation

If functional separation doesn’t provide the intended parallelization it is time to
split a functional entity. Different to the functional separation the distinction pro-
posed here is in no way canonical or immediately obvious. Instead, it presents a
methodology to scale large systems successfully.

Similar to the structural separation of conventional computer architecture into
CPU, memory and I/O subsystem, we split IT systems structurally into three kinds
of components as shown in figure 1: processing, data storage and communications
components. Unlike the functional separation, which was directly related to dis-
tribution across multiple machines, the structural separation has another purpose:
There are different scalability strategies for these kinds of components. We assume
the worst, i.e. that every component needs to scale horizontally over a number of
basically constant size subcomponents.

Figure 1: Structural Separation, First Abstraction Level

Again, it may be reasonable to put certain data storage and processing compo-
nents onto the same machine or set of machines. But the strategies to make the
components scale differ and need to be considered separately.

It may be obvious what the communications networks are: These are the various
networks between components, like TCP/IP networks and Fiber Channel based
SANs. These networks provide the connectivity needed between the other two
components. These two are best explained through a generic “work flow”: The
data components store and maintain some sort of persistent data that is needed
for the functionality. The only functionality they need to provide is a consistent,
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i.e. transaction-capable or atomic, “read” and “write”. The processing components
open a transaction with the storage components, do some computations with the
data read and possibly some external input, schedule some write operations and
execute them by commiting the transaction, possibly generating some externally
visible output. If a processing component fails during a transaction, the entire
transaction is aborted but can be restarted from scratch, possibly on a different
processing component.

If this workflow concept can’t be applied, chances are that the system won’t
scale. In fact, we will see that it is possible that the system may not scale even if
the concept applies.

1.6 A Simple Example

Back in the old6 days when I was an undergraduate student I had to survive a soft-
ware lab. One of the projects we were doing was a software for a video rental shop.
Let’s assume we wanted to build another such system, this time for “Video Inter-
national”, a fictional video rental chain operating 24/7 around the world through
half a million outlets.

This system would consist of a customer data base, or customer data component
according to our definition. For each customer we would save some data, like name
and phone number plus a unique customer identifier. The transactions for these
components would be creation, modification and deletion of individual customer
records (in RDBMS speak) or objects (in OO speak).

Similarly, there would be a data component of video tapes (or DVD’s these days),
holding the name, current rental fee, and a unique tape identifier. The transactions
defined here would be similarly the creation, modification and deletion of individual
tape records.

A last data component we’ll call the “state” data component, keeps the state of
the tape, like “available”, or “unavailable until 〈date〉”, and possibly some reserva-
tion made by some customer. The transactions defined here are basically “handing
a tape out to a customer until a predefined return time”, “receiving a tape back”,
“reserving a tape for a customer for a given time interval” and “reading out a
consistent snapshot from the entire component”.

And there would be some processing components. Some components would
provide a user interface to create, modify and delete customer or tape data. They
would simply separate the data representation and the user access interface. This
separation of data and user interface (or “model” and “view” according to the OMV
paradigm) is common and doesn’t appear too spectacular at this point but proves
essential later on: It allows the system to scale the data components horizontally
with a minimum of effort.

A similar component would provide a user interface to the state data component
so people can reserve, rent out and return tapes. This component is slightly more
complex because it doesn’t interface a single data component but all three.

To prepare for some oncoming problems, we also want a processing component
that attempts some statistic correlation of the “state” data component. This com-
ponent runs through the entire state data component and tries to do some rather
ill-defined statistical analysis.

6Well, not that old. . .
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2 Processing Components

Picking the easier part of the job first we assume that we already have our data
components in place and try to build the processing components.

What is important about processing components and how can they be made
to scale? First step during the system design is to define the components. In the
“Video International” example we made some decisions apparently at random. Now
we start to provide the reasoning behind these decisions.

2.1 Load Distribution and Load Balancing

Assuming that we have a transaction mechanism available with the data compo-
nents, we first split the processing components into many subcomponents that all
run in parallel.

Leaving the transaction/atomicity issue to the data components, the processing
subcomponents themselves don’t pose any particular problem to the system archi-
tecture. Sometimes, as in the case of a GUI processing component, the load on any
individual subcomponent is inherently bounded. In other cases it is necessary to
provide a load distribution mechanism as shown in figure 2. Several mechanisms are

Figure 2: Processing Component Load Balancing

available: Round-robin DNS is a simple way to provide a rough load distribution.
Load balancers like CiscoTM LocalDirectorTM provide a better distribution and com-
ponent failure handling. Alternatively, a custom “dispatcher” subcomponent can be
written to distribute the load over multiple “backend” processing subcomponents,
possibly based on some load measurement on the “backend” subcomponents.

In very large systems, the combination of round-robin DNS and some balancers
can be used if a single balancer can’t possibly handle the entire load even as a
balancer only. While out of the scope of this discussion the approach also proves
essential to build reliable systems.

2.2 Pushing Work Towards the Clients

Until now we have ignored the ubiquitous client-server paradigm. Now is the time
to assimilate and make good use of it.
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A client is little more than a processing subcomponent that may access the data
components either directly, like an OracleTM client connecting through SQLnetTM,
or indirectly through other processing components, like a web browser connecting
through a web server and CGI script to some data files. So the concept presented
doesn’t interfere with the client-server paradigm.

In a client-server environment the load on the server normally grows monoto-
nously, in most cases somewhat linearly, with the number of clients. Since server
hardware is usually more expensive than client hardware and client hardware by
definition scales horizontally, it is good practice to push as much load as possi-
ble towards the clients. Put flatly, JavaTM applets are a better idea than JavaTM

servlets—at least until the network components turn out to become the most press-
ing problem or the clients need excessive sysadmin care.

At least in a LAN environment it may be perfectly reasonable to push all pro-
cessing components towards the clients, eliminating the need for load distribution
and load balancing mechanisms as proposed previously. Both the network and the
sysadmin effort problems can often be overcome by caching the application on the
client. This eliminates all unnecessary network traffic, since the application is only
transmitted again if the cached version is out of date. And caching provides a soft-
ware “deployment” mechanism that requires virtually no sysadmin care at all on
the clients.

2.3 Crash Recovery

Processing components not only scale well, they are also easy to make redundant.

If a processing subcomponent fails while working on a job, the entire transaction
must be considered lost and the job needs to be restarted. This can easily be
implemented provided that the transaction concept is sound.

Similarly, the data component that a transaction is opened with needs to check
the livelihood of the processing subcomponent whenever a competing transaction
tries to access a locked piece of data. The processing component only needs to
provide an interface for this livelihood check.

2.4 Transaction Size Problems

Things can get difficult if the transaction size grows with the load, or the amount of
data stored in the data components. We will take a closer look at the transaction
problem when we analyze the data components and now only focus on the processing
component side of the problem.

As far as the processing subcomponents are concerned it is important that any
job can be run on fixed size hardware. In the case of “Video International”, the
transactions for user, tape and reservation manipulations are effectively of constant
size and don’t pose any particular problem.

The ill-defined statistic correlation component however accesses the entire state
data component. A simple read-process-write activity will need network bandwidth
and memory increasing with the amount of data stored in the state component. This
makes it necessary to break down the component into subcomponents using a multi-
level approach. A “master” subcomponent level provides the “statistics” interface
and controls a set of “slave” subcomponents that run in parallel and work on parts
of a single job coming in from the “master” subcomponent. If it is impossible to
break up a functionality this way the functionality itself either doesn’t scale or needs
some special analysis beyond the scope of this text.
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2.5 Layered Processing Components

Using a layered approach won’t be useful when dealing with large transaction size
only but as a fairly generic approach.

The client-server model we’ve seen in section 2.2 has shown another good use
for layered processing components.

Similarly, computation-heavy functionality can be attempted to be split in a
layered manner. This is particularly useful if different layers have different hardware
requirements that allow for somewhat specialized hardware. These can be simply
CPU vs. memory heavy layers or layers that use e.g. special crypto hardware like
the SSL accelerators available from some vendors.

Systems built out of standard software components also tend to break up easily
into layers of components. A web server running CGI scripts can be considered
consisting of a layer of web servers like Apache and another layer of CGI scripts.

Finally, in a reasonably complex system it may be clever to provide these layers
of processing components to break up the system into independent parts. While
many software developers still don’t really appreciate—and use—the possibilities
a distributed system provides them with, some do. After all, parts of a job may
be more easily implemented in one programming language while other parts are
asking for another. Shell scripts, AWK and Perl are easily modifiable for not too
performance-critical jobs, Java has some fancy features that can be useful occasion-
ally, C provides a clean interface to the underlying operating system and C++ is
the choice language if a big system needs to be implemented, providing for both an
object oriented approach and performance7.

3 Data Components

Making processing components scale was fairly straightforward. Data components
however prove more of a challenge. Transactions, the blessing of todays RDBMS,
turn out to be the bane of scalability.

3.1 Splitters and Leaf Subcomponents

The most common way to structure a data component is to provide a sufficient
number of “leaf” subcomponents that hold the data and a “splitter” (sometimes
called “director”) subcomponent or several “splitter” subcomponents that know
what data is stored at which leaf through an indexing mechanism. All access from
outside the component is done through the splitters.

This is pretty much like a library with lots of bookshelves (the leaf subcom-
ponents) holding books (the data) sorted by author (the index), and at least one
librarian (the splitter) who knows how the index relates to the bookshelves.

Implementation of the index can be done through actual index subcomponents.
Alternatively a hash function may be used. While the former approach allows
fairly easy redistribution of data in a running system and localization of data in a
geographically distributed environment, the other performs and scales better. The
choice is largely a matter of taste and the particular requirements. Figure 3 shows
an example data component setup that makes use of an index subcomponent.

3.2 Transactions

What is the problem with transactions? Why don’t they scale?
7. . . at least if you know what you are doing. . .
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Figure 3: Generic Data Component Structure

The easy answer is that the transaction mechanism in general is too powerful. It
can’t be parallelized properly, at least in a real-world environment where individual
components sometimes fail.

Imagine a set of transactions that spans multiple data components, each im-
plemented through multiple subcomponents in itself. Where can we maintain that
transaction information? We need to put the transaction where the data is so they
don’t get “separated” from each other, leading to inconsistencies that we want to
avoid at all costs. But then, that transaction needs to spread across multiple com-
ponents or at least subcomponents in itself because it can’t be limited to a single
subcomponent in general. This directly collides with the all-or-nothing nature of
transactions: If one of the components involved becomes temporarily unavailable
all other components involved get stuck since they can’t always reliably know about
the state of the failed component until it comes up again. The theory behind this
issue based on an abstract problem called the “Three Army Problem” (or sometimes
“two-army problem”) and explained by Tanenbaum [Tan96, p.499f].

Even without these reliability-related problems the transaction mechanism em-
ulates a sequential manipulation of the data stored. This emulation requires some
sort of central control that defines the sequence in which the manipulations are
arranged. While this observation has fairly little real-world relevance in itself it
shows that there is a fundamental problem with transactions.

So how can we deal with this problem? There are two options, none of which
may be applicable to a given real-world problem, though: We may either try to
get away with transactions in general or we may restrict transactions in such a way
that they don’t need to be distributed across multiple machines.

3.3 Static and Semi-Static Data

The easiest way to avoid transactions is to eliminate all write operations from the
processing jobs. This of course can’t be done in general, but if we identify all static
data as such we can scale a possibly large part of a system.

Static data can be easily replicated and scales well. Just put as many copies
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on as many identical subcomponents as necessary. If you run out of capacity, add
more subcomponents.

Now data base programmers may complain that in order to use SQL to its fullest
they need the static data in the same RDBMS as the dynamic data they are working
on. This is fine unless the data base turns out to be critical to scaling, in which case
everything that doesn’t have to be in that data base needs to be ripped out—the
static data as well as complex SQL statements and stored procedures.

In our “Video International” example consider a table mapping zip codes to
town names. We will see soon that the customer data component can be fairly eas-
ily scaled across multiple machines. There is absolutely nothing wrong with keeping
copies of that zip code table with every customer data subcomponent, except pos-
sibly some performance aspect. Keeping the zip code table a separate component
from the customer data component doesn’t mean they can’t be located on the same
hardware and in the same table space. We just need different approaches to make
these components scale. Static data like the zip code table is only once copied where
needed while the customer data needs to be taken particular care of.

Every once in a while, zip codes actually change. If that happens, our decision to
consider zip codes static data causes two problems: It may be necessary to bring the
entire system down for an update and the change may cause some inconsistencies
throughout the system if the developers assumed that zip codes are perfectly static.

These limitations may be considered acceptable or not, depending on the func-
tional requirements that the system has to meet. “Video International” may accept
a five minute shutdown every couple months to update its zip code table, especially
if scheduled downtimes at night are acceptable. An official Internet-based zip code
data base may want to avoid even that downtime.

Keeping the downtime to a minimum can often be achieved by first copying the
new data to the operational subcomponents but not using it yet, then shutting the
system down shortly, substituting the data on the subcomponents and then bringing
the system up again.

3.4 Monotonous Data and Caching

But even if data is incessantly written it is sometimes possible to avoid transactions.
The most prominent case is “monotonous” data, i.e. data that only once gets created
and never actually changes.

Consider our tape data component from “Video International”. If we are bright
enough to stick to time-proven techniques we assign each tape a unique tape ID.
And that ID won’t be recycled for whatever other tape, even if the first tape gets
thrown out—after all, IDs aren’t that expensive.

Doing so assures that certain data won’t ever change but will only get added.
This effectively makes it unnecessary to protect against changes through transac-
tions. Data can be replicated through caching. Whenever a cache subcomponent
is asked for some data it first searches its internal cache and only if that proves
unsuccessful it asks a “central”, “authoritative” data subcomponent. Cached data
can be preserved for an unlimited time and normally gets thrown away only when
the individual cache subcomponent runs short of storage.

Of course this eventually clutters up the authoritative data subcomponent. Old
data that has become irrelevant, like tapes that have been removed from stock and
long since thrown away should be removed from the data subcomponents. While
the caches can be left to their own device it may be necessary to sanitize the au-
thorative data subcomponent. Data that is obsolete however shouldn’t be involved
in a transaction anymore, so some sort of “sanitization” or “garbage collection”

12



mechanism can be implemented in a fairly straightforward manner and without the
need for transactions.

At this point it should have become obvious why we separated the tape data
component from the state data component: We were hacking off the parts that
we can provide an easy solution for, trying to make the hard core of the problem
manageable.

3.5 Directories and Temporary Inconsistencies

Sometimes it is possible to avoid transactions by explicitly dealing with temporary
inconsistencies. This line of approach is common with “directories”, data bases that
are optimized for read access and don’t provide transactions, like LDAP or DNS.

With our “Video International” example the customer data component falls
into this category. Sometimes customers change their name or address or even stop
renting videos. These changes are infrequent but do happen. A changed name or
address is not particularly critical; even if a bill may be sent to the old address
several minutes after the address was changed this may not warrant the use of
transactions.

To avoid serious inconsistencies at this point it is however essential to read all
data only once during an operation and to assure that all the data read is in itself
consistent. This will avoid using both the old and new address for a customer, for
example; sending a bill to the customers old address is fine, but using the street
name from the old and the zip code and town from the new address is bound to
cause trouble. This may be difficult if large parts of data components need to be
read consistently. In this case a “lightweight”version of the transaction mechanism
as proposed in section 3.8 can possibly be applied. This “lightweight” transaction
mechanism only needs to provide for “read” locks but doesn’t need “write” or
“commit” functionality.

There are several well-known ways to make a directory scale. Looking at the
way DNS is implemented shows that a well proven approach is to provide a “pri-
mary” subcomponent that all write operations are directed to, some “secondary”
subcomponents that serve all the read requests, and a mechanism to synchronize
the secondaries against the primary. To provide high reliability however, more com-
plex alternatives out of the scope of this text may need to be used to avoid having
a “primary” subcomponent turning a single point of failure. Additionally, caching
may be a possibility if a time-to-live can be defined for all data such that data
outdated less than that time is acceptable to be used.

3.6 Failing Towards a Defined Direction

There are cases where transactions are unnecessary because a failure in a single
direction is acceptable.

A well-known example of this approach is the way the SMTP protocol is de-
signed. A message may never be lost during communications but may possibly be
sent multiple times. This example doesn’t cope with the loss of data while stored
in an SMTP host. In general however, a redundant setup that will only fail in a
single direction due to a hardware failure is equally possible.

If we are dealing with data items that get stored somewhere, like e-mail messages
or Usenet news articles or such, it is possible to use unique (message) IDs to sort
out multiple transmissions at the leaf data components8.

8In the case of SMTP such a “deduplication” feature would of course be a fatal security flaw.
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While the SMTP example is limited to communications reliability it shows how
to avoid transactions in some cases, converting an “exactly once” transaction into
an “at least once” transaction.

3.7 Transaction Space Partitioning

If transactions are actually necessary the next step is to see if the transactions
only involve disjoint data sets. If the transaction space can be partitioned into
reasonably-sized and disjoint parts it is possible to provide transaction-capable data
components that actually scale.

In our “Video International” example we have managed to get away without
transactions as far as the customer and tape data components are involved. Tape
reservations however do need transactions: We cannot afford to have multiple cus-
tomers reserve the same tape for the same time slot. But then, tape reservations
only relate to a single tape, so we can partition the transaction space for the tape
state data component by tape. The transactions can thus be pushed towards the
individual state data subcomponents.

This approach is extremely simple, reliable and efficient if it is applicable. The
hierarchical transaction spaces presented in the next section shouldn’t even be con-
sidered until a “flat” transaction space partitioning has proven to be unapplicable.

3.8 Hierarchical Transaction Spaces

What can we do if the transaction space can’t be partitioned into manageable
chunks? Precious little actually, unless we are willing to spend quite some effort on
it.

If we can’t limit transactions to individual leaf subcomponents we need to push
the transactions up towards or even above the splitter subcomponents involved. We
need to introduce special subcomponents that only maintain transactions and pass
all operations through to the splitter or leaf components below. In RDBMS speak
these subcomponents are called “transaction monitors”9.

Applying his approach without the use of existing implementations is complex
and error-prone, especially as soon as reliability issues get involved, because error-
handling gets more complex since it has to deal with partial failures. If scalability
is not too much of an issue it may be feasible to use only a single splitter that
keeps all transactions. This will improve scalability by separating the splitter and
transaction part of the data component from the actual data storage leaf nodes.
If the splitter can’t handle everything it may be possible to use multiple layers of
splitters, especially if transactions are comparatively large.

This approach requires a huge effort to achieve a small increase in scalability.
It should only be considered a last resort. This explains why the statistics feature
in our “Video International” example is so troublesome—unless we accept some
inaccuracies because we won’t insist on a perfectly consistent snapshot of the state
data.

3.9 Distributed Transactions

Why do transactions need to be located at a single subcomponent? Shouldn’t it be
possible to have a distributed transaction mechanism?

The short answer to that question is “no”, according to the theory behind the
“three army problem” mentioned above. It may be reasonable to come up with

9Thanks, Gerd.
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a weaker transaction definition that can be used in many cases but does scale
horizontally, but to my knowledge no such concept has yet made it towards a generic
and industrial strength10 solution.

The problem is basically that first you develop a solution running in a 100%
reliable environment. Then you need to implement some error recovery since the
environment isn’t 100% reliable. Then you need some error recovery recovery in
case something goes wrong during error recovery and so on to infinity and beyond11.
Even the immediately obvious approach “deal with errors beyond a given error
layer manually” is tricky, since the error recovery layers often don’t relate to the
“severity” of an error; some simple real-world error may make its way straight down
an arbitrary number of error recovery layers if the error model that the error recovery
is based upon doesn’t closely match the real-world reliability of the components
involved.

But if we leave reliability issues aside it is actually possible to recycle a locking
mechanism concept that is used in another context. What we need are multiple
transaction subcomponents that need to arrange for a distributed locking mecha-
nism.

This problem is effectively the cache handling issue in SMP12 hardware in a
different guise. As long as all CPUs access different memory areas, things perform
reasonably well. Once they try to access the same memory areas however, perfor-
mance significantly degrades. What’s worse, cache management doesn’t scale well
over too many CPUs.

We can try to implement the SMP cache management to provide a distributed
locking mechanism. A reasonable line of approach may be to provide multiple levels
of transaction locks. Consider the state data component of “Video International”
and the statistical analysis processing component. Assume that the statistics com-
ponent needs to obtain a consistent view of the data. This implies that a processing
component needs to obtain a lock, or in this case at least a consistent read, on all
data within the state data component. This could possibly be handled through
such a distributed locking mechanism.

Again, this approach provides only limited scalability and no serious transaction
behaviour in real-world systems where subcomponents occasionally fail. A line of
approach like “if anything goes wrong stop everything and call the sysadmin for
help” is rarely a solution., at least once the number of machine exceeds the “pain
threshold”.

3.10 Detour: EAI Middlewares

During the last years, “Enterprise Application Integration” (EAI) and “Middle-
ware” became popular buzzwords. What are these and what about the occasional
claims that they provide a “reliable” communications mechanism? We now have
the tools available to verify some of the statements often heard from EAI vendors.

EAI software generally claims to provide two features: A reduced number of
intercommunication links between applications and an additional abstraction layer
between the applications and the network protocol stack layers, providing “reliable”
communications. Figure 4 shows a sample EAI environment with four machines
and three applications (which are hopefully implementing either data or processing
components).

10“Industrial strength” here means “applicable in a real-world environment”, not “commercially
sold by a vendor that can be blamed if/that it doesn’t work”.

11In case you wonder: This is Buzz Lightyears (of “Toy Story”) motto.
12SMP = Symmetric MultiProcessing, i.e. computers with multiple CPUs
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Figure 4: Sample EAI Environment with three Applications

The first feature is based on the idea that all applications only communicate
with the EAI software which takes care about where to send which data. This is
fine from a syntactical point of view, and aside from possible performance effects
it is definitely a good idea to use a standardized data format for communications
between applications, be it ASN.1/XDR, Java RMI or XML, and a centralized
“routing” management. Making different applications work together still requires
a lot of “adapter” programming though; in this respect EAI is little more than a
methodology rather than a shrink-wrapped solution.

The second feature is more interesting: EAI allows to queue messages to other
applications “reliably” and assures they are eventually delivered. There are two
important implications of this approach: A “serious” failure may lose the queue,
possibly leading to inconsistencies since some messages related to a “transaction”
may have been lost while others have been executed. That failure may be a hardware
failure, a buggy operating system or system software or simply a bug in the EAI
software. In any case, there may be undetected half-finished “transactions” left
from such a failure, leading to data inconsistencies between applications.

Similarly, there is no such thing as a “transaction”, since a middleware can’t
guarantee that a set of messages presenting a “transaction” has that “all-or-nothing”
property a real transaction has. While messages are sent, some arrive earlier than
others, leading to a transient inconsistency. As soon as network reliability must be
taken into consideration, these “transient” inconsistencies can last as long as a net-
work failure. What’s worse, they can’t be reliably detected since our considerations
about error recovery from last chapter still hold.

EAI software simplifies several important and tedious tasks involved in dis-
tributed software development, much like relational data bases do in their domain.
But it doesn’t solve the transaction problems we’ve seen and as such doesn’t even
address most of the problems we’ve encountered in this chapter.13

4 Communications Components

Finally, we need to take care of the communications components involved. Aside
from the reliability considerations out of scope of this text it is the communications
among the software subcomponents that dictate on which machines to locate the
processing and data subcomponents. So after we’ve dissected the system and split
it into data and processing components, and then split those in subcomponents,

13In case you’ve been in Frankfurt during that talk and can’t recall me talking about this: I’ve
skipped this topic from the actual talk due to time constraints.
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the communications components make us put those structural subcomponents back
together on real machines.

4.1 Estimating Upper Bounds

The first step is to eliminate upper bounds on communications. This helps to put
communications bandwidths and latencies into proportion.

At that non-commercial ISP mentioned in section 1.2 someone proposed to re-
place the Thinnet we were using there with a switched Fast Ethernet network.
Aside from the fact that exactly one machine could have been equipped with Fast
Ethernet this bandwidth would’ve been entirely oversized compared to the obvious
upper bound defined by the sum of the single 64 kbit/s uplink and eight analog
modems at 14.4 or 28.8 kbit/s each. It took some time and effort to explain that
the bandwidth provided wouldn’t be needed and it took even more time and effort
to explain that no, the latency wouldn’t noticeably change since the latency between
the users modem and the ISPs modem was about 180 ms, the latency within the
Thinnet was around 4 ms and the latency upstream along the 64 kbit/s line was
another 120 ms. . .

Similarly, the traffic between (sub-)components can often be estimated. In par-
ticular, the data traffic passing between the splitter subcomponents and the process-
ing subcomponents is usually roughly equal to the data traffic between the splitter
subcomponents and the leaf data subcomponents. Such relative bounds, explaining
the relation between the bandwidths used between components and subcomponents,
are usually at least as important as absolute bounds; they explain where the system
will be heading when it starts to grow.

4.2 Bandwidth Tuning

This last observation helps to locate the subcomponents: Since we can’t keep the
splitters close to the leaf data subcomponents it is usually smart to put splitters
towards the processing subcomponents to keep half the communications traffic local
within the machines involved—provided that it is possible to have multiple splitter
subcomponents. And since the division into subcomponents is largely a conceptual
one, it is perfectly reasonable to have splitter subcomponents and processing sub-
components even within a single binary as long as they are conceptually separated
and there can be a one-to-one relation between them.

Things can get significantly more complex if WAN connections get involved. In
this case, as a general rule as much data as possible should be replicated or cached
in each location. A more detailed analysis of the particulars of a given system at
this point virtually always proves worth the while, since especially in WAN networks
bandwidth is too expensive to be wasted.

4.3 Latency Tuning

Another problem that often becomes important within a geographically distributed
environment is latency.

Generally, software developers should take into consideration latency issues by
minimizing the number of communication rounds. But if we consider the software
as “fixed” it is important to take care of latency as well as bandwidth.

Bandwidth and latency behave fundamentally different: Bandwidth increases
with the load of a system while latency stays mostly constant. And bandwidth can
be increased if someone is willing to pay for it; latency is largely determined by the
distances involved and the speed of light. Technically this property puts latency
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out of the scope of a “large systems” discussion but just like bandwidth it is vital
to know and understand.

The tuning measures are similar to bandwidth: Put those components that
are latency critical together as close as possible—and keep prodding the software
developers to use as few communication rounds as possible, especially on high-
latency connections.

5 Related Topics

Throughout this text we’ve mostly avoided to discuss reliability issues. But relia-
bility is critical to large systems since the larger a system the higher the probability
that components fail.

Reliability in itself is a hugely complex subject, far more complex than scalabi-
lity as presented here. What’s worse, reliability has many distinct aspects that often
interfere with each other, while scalability is usually either a reasonably straight-
forward problem or an unsolvable one.

Similarly we have ignored performance except when we finally talked about
communications components.

Another topic we’ve entirely ignored is the question how to operate a large sys-
tem. Again, this is a complex subject in itself. Fortunately, the approach presented
at least doesn’t inherently interfere with operatability. Providing many small but
functionally equivalent subcomponents allows for efficient operation for two reasons:
First, machines can be categorized by “classes”, helping to organize work in such a
way that much work can be done once at the “class” level instead of any individual
machine through tools like cfengine, rdist and the occasional shell script one-
liner14. Second, if reliability issues have been properly taken care of it is possible to
bring down most machines for maintenance purposes without disrupting service.

The shortlived and technology dependent choice of hardware and (system) soft-
ware has been entirely ignored as well. This is only partially because of the
shortlived nature of any answer to this question. More importantly the choice of
“platform” or “infrastructure” components should primarily be based on the local
“strategic platform”, not on the particulars of any single system. Even if the strate-
gic platform is insufficient to cater for the needs of a single system that platform
should be reconsidered according to strategic considerations, taking the particulars
of the system only as hints as where to extend or update the strategy.

Finally, the political hassles involved with large systems and their design have
been blissfully ignored. Among others Adams [Ada96] [Ada97], DeMarco [DeM95]
[DeM01], DeMarco and Lister [DL99], Jones [Jon94], Machiavelli [Mac14]15, Roberts
and Roberts [RR00], Weinberg [Wei86] and Yourdon [You97] have some useful in-
sights I’ve personally found helpful myself16.
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